

RIYOSUPTY LTD

 Oracle SQL

Volume 1
Student Guide

Document ID : OracleSQL10

Revision : 1.0

Date : 22 July 2003

Contents

1. Introduction ... 6
1.1 Typographic Conventions ... 6

2. Basic SQL ... 7
2.1 Objectives ... 7

2.2 Test Data ... 7

2.3 SELECT Statement Usage .. 8

2.4 Basic SELECT Statement ... 8

2.5 Column Selection .. 9

2.6 Null Values ... 9

2.7 Arithmetic Operators .. 10

2.8 Column Aliases ... 11

2.9 Concatenation Operator .. 12

2.10 Literal Strings.. 12

2.11 Duplicate Rows ... 13

2.12 Summary ... 14

2.13 Exercises ... 14

3. Data Conditioning ... 15
3.1 Objectives ... 15

3.2 Test Data ... 15

3.3 Limiting Rows .. 16

3.4 Using Literals .. 17

3.5 Conditional Operators ... 18

3.6 Additional Conditional Operators ... 19

3.6.1 The BETEEN Conditional Operator .. 19

3.6.2 The IN Conditional Operator ... 19

3.6.3 The LIKE Conditional Operator .. 19

3.6.4 The NULL/NOT NULL Conditional Operator.. 19

3.7 Logical Conditional Operators .. 21

3.8 Rules of Precedence .. 22

3.9 ORDER BY Clause... 23

3.10 Summary ... 25

3.11 Exercises ... 25

4. Single Row Functions ... 26
4.1 Objectives ... 26

4.2 Test Data ... 26

4.3 Single Row Functions ... 27

4.4 Character Functions .. 28

4.4.1 Case Manipulation Functions .. 28

4.4.2 Character Manipulation Functions ... 30

4.5 Number Functions ... 34

4.5.1 TRUNC .. 34

4.5.2 ROUND ... 35

4.5.3 MOD .. 35

4.6 DATE Functions ... 36

4.6.1 SYSDATE.. 36

4.6.2 MONTHS_BETWEEN.. 37

4.6.3 ADD_MONTHS .. 38

4.6.4 NEXT_DAY .. 38

4.6.5 LAST_DAY ... 38

4.6.6 ROUND and TRUNC with dates ... 39

4.7 Conversion Functions ... 40

4.7.1 Implicit Data Type Conversion .. 40

4.7.2 Explicit Data Type Conversion .. 40

4.7.3 TO_CHAR (With Dates) ... 41

4.7.4 TO_CHAR (With Numbers) .. 43

4.7.5 TO_DATE.. 44

4.7.6 TO_NUMBER ... 45

4.8 Nesting Functions ... 45

4.9 Generic Functions ... 46

4.9.1 NVL ... 46

4.9.2 NVL2 ... 47

4.9.3 NULLIF ... 48

4.9.4 COALESCE ... 48

4.10 Conditional Functions ... 49

4.10.1 CASE ... 49

4.10.2 DECODE ... 50

4.11 Summary ... 51

4.12 Exercises ... 51

5. Handling Multiple Tables ... 52
5.1 Objectives ... 52

5.2 Test Data ... 52

5.3 Using Multiple Tables... 53

5.4 Join Syntax And Rules .. 54

5.5 Join Types ... 55

5.5.1 Equijoin .. 55

5.5.2 Non-equijoin .. 56

5.5.3 Outer Joins ... 57

5.5.4 Self Joins .. 58

5.5.5 Cross Joins ... 58

5.5.6 Natural Joins .. 59

5.5.7 The ON Clause ... 60

5.5.8 Three Way Joins .. 61

5.5.9 Left Outer Join ... 62

5.5.10 Right Outer Join ... 62

5.5.11 Full Outer Join ... 63

5.6 Summary ... 64

5.7 Exercises ... 64

6. Group Functions ... 65
6.1 Objectives ... 65

6.2 Test Data ... 65

6.3 Using Group Functions ... 66

6.4 Group Function Syntax and Rules .. 66

6.5 Common Group Functions .. 67

6.5.1 AVG ... 67

6.5.2 SUM ... 67

6.5.3 MIN .. 68

6.5.4 MAX .. 68

6.5.5 COUNT .. 69

6.6 NVL and Group Functions.. 70

6.7 The GROUP BY Clause ... 71

6.8 The HAVING Clause .. 73

6.9 Summary ... 74

6.10 Exercises ... 74

7. Subqueries .. 75
7.1 Objectives ... 75

7.2 Test Data ... 75

7.3 Purpose of a Subquery .. 76

7.4 Subquery Syntax and Rules .. 77

7.5 Subquery Types .. 78

7.5.1 Single Row Subqueries .. 78

7.5.1.1 Single Row Subqueries and Group Functions .. 79

7.5.2 Multiple Row Subqueries .. 80

7.6 Subqueries and the HAVING Clause ... 82

7.7 Null Values in a Subquery .. 82

7.8 Summary ... 83

7.9 Exercises ... 83

8. Data Manipulation ... 84
8.1 Objectives ... 84

8.2 Test Data ... 84

8.3 Data Manipulation Language (DML) ... 85

8.4 INSERT Statement.. 86

8.4.1 INSERT VALUES Clause ... 86

8.4.2 INSERT and Nulls ... 87

8.4.3 INSERT Rules ... 87

8.4.4 INSERT and Functions .. 88

8.4.5 INSERT and Substitution Values .. 89

8.4.6 Inserting Rows From Another Table ... 90

8.4.7 INSERT with Subqueries ... 91

8.5 UPDATE Statement .. 92

8.5.1 UPDATE with Literal Values .. 92

8.5.2 Updating Rows From Another Table ... 93

8.6 DELETE Statement .. 94

8.6.1 DELETE with Literal Values... 94

8.6.2 Deleting Rows Based On Another Table ... 95

8.7 Default Values .. 96

8.8 MERGE Statement.. 97

8.9 Database Transactions .. 98

8.9.1 DCL Transactions .. 98

8.9.2 DDL Transactions .. 98

8.9.3 DML Transactions ... 98

8.9.4 Transaction Lifecycle... 99

8.9.5 Data State ... 100

8.9.6 Implicit Transaction Handling ... 100

8.9.7 Statement Level Rollback .. 101

8.9.8 Read Consistency ... 101

8.9.9 Locking .. 102

8.10 Summary ... 103

8.11 Exercises ... 104

9. Table Management ... 105
9.1 Objectives ... 105

9.2 Test Data ... 105

9.3 Object Types ... 106

9.4 CREATE TABLE ... 107

9.5 Table Scope ... 107

9.6 Tables used in Oracle .. 108

9.6.1 User Tables .. 108

9.6.2 Data Dictionary Tables .. 108

9.7 Data Type .. 109

9.8 DATETIME Data Types ... 110

9.8.1 Timestamp.. 110

1. Introduction
1.1 Typographic Conventions
The below table indicates the typographic conventions fro all the examples used throughout this
manual.

Convention Meaning Example

Bold, Uppercase SQL Reserved Word SELECT * FROM employees

Bold, Lowercase Database Objects SELECT * FROM employees

Bold, Italic Literal Value SELECT ”F” from employees

2. Basic SQL
2.1 Objectives
After this chapter you should be able to perform the following,

 Execute basic SELECT statement.

 Understand basic functionality and format of the SELECT statement.

2.2 Test Data
The below table information is used as test data for the examples shown throughout this chapter.

TABLE : employees

empno empname salary Manager

AAAA Greg AAAC

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAA_E John Paul 5000 AAAD

2.3 SELECT Statement Usage
The SELECT statement retrieves data from the database. The SELECT statement has the
following usage,

 Joining Joins the data from multiple tables to form one set of results.

 Projection Choose specific columns from a table.

 Selection Choose specific rows from a table.

The following rules and guidelines apply to the SELECT statement,

 SQL statements can be split over multiple lines.

 SQL statements are not case sensitive.

 SQL reserved words cannot be split over multiple lines.

 SQL reserved word cannot be abbreviated.

 Clauses are split across multiple lines for easy legibility.

 Indents are used for easy legibility.

 Only SQL reserved word are entered in uppercase.

2.4 Basic SELECT Statement
All SELECT statements must include two clauses,

 The SELECT clause identifies which columns to select.

 The FROM clause identifies which table to select the columns from.

Example
Basic SELECT statement

SELECT empno, empname FROM employees

empno empname

AAAA Greg

AAAB Mathew

AAAC John

AAAD Barry

AAA_E John Paul

The above example selects the empno and empname fields from the employees table.

2.5 Column Selection
As discussed in section 2.2 the SELECT clause identifies the list of columns to display. The SQL
statement can display all columns or a list of specific columns.

 Displaying all columns, You can display all columns of a table by following the SELECT
clause with an asterisk “*”.

 Displaying specific columns, You can display specific columns of a table by following the
SELECT clause with individual column names.

Example 1
The result of the below selection will display the information for every column in the table.

SELECT * FROM employees

empno empname salary manager

AAAA Greg AAAC

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAA_E John Paul 5000 AAAD

Example 2
The result of the below selection will display the information for every column specified on the
SELECT clause.

SELECT empno, empname FROM employees

empno empname

AAAA Greg

AAAB Mathew

AAAC John

AAAD Barry

AAA_E John Paul

2.6 Null Values
A null value is a column that contains no data. A null value is not a zero or a space, zero and
space have ASCII values. Any column can contain a null value except for columns that have
constraints of “NOT NULL” and “PRIAMRY KEY”. It is important to remember that any arithmetic
expression that contains a null will result in a null.

Example 1
Arithmetic Expressions with null values

SELECT empno, empname, salary, salary+1000 FROM employees

empno empname salary salary+1000

AAAA Greg

AAAB Mathew 10000 11000

AAAC John 10000 11000

AAAD Barry 10000 11000

AAA_E John Paul 5000 5100

The first row in the above example return a null value in the salary+1000 field due to the null value
in the salary field.

2.7 Arithmetic Operators
SQL offers the add(+), subtract(-), multiply(*) and divide(/) arithmetic operators for use when
entering SQL statements. The arithmetic operators can be used to calculate and display specific
values based on rows retrieved from an SQL statement.

Example 1
Using arithmetic operators

SELECT empno, empname, salary, salary + 1000 FROM employees

empno empname salary salary + 1000

AAAA Greg

AAAB Mathew 10000 11000

AAAC John 10000 11000

AAAD Barry 10000 11000

The above example evaluates the arithmetic expression salary + 1000.

If an arithmetic expression contains various operators the operator precedence is as follows,

 Multiplication and division occur before addition and subtraction

 Multiplication and division are of the same precedence.

 Addition and subtraction are of the same precedence.

 Same precedence operators are evaluated from left to right.

Overriding the rule of operator precedence is achieved by the use of parenthesis.

Example 2
Using parenthesis

SELECT empno, empname, salary, 2*(salary + 1000) FROM employees

empno empname salary 2*(salary + 1000)

AAAA Greg

AAAB Mathew 10000 22000

AAAC John 10000 22000

AAAD Barry 10000 22000

The above example overrides the rules of precedence and evaluates the part of the arithmetic
expression within the parenthesis first.

2.8 Column Aliases
The results of an SQL statement are categorized under column headings. Sometimes these
column headings are difficult to understand and are non descriptive. It is for this reason we
introduce column aliases.

Rules for using column aliases are as per below,

 Must come immediately after the column name.

 Columns aliases must be enclosed in double quotes for case sensitivity or if they contain
spaces or special characters (#,$,%,^,etc…).

 By default column aliases appear in uppercase.

 The optional reserved word AS is used to make the column alias easier to read. It appears
between the column name and alias.

Example 1
Using column aliases

SELECT empno “Number”, empname “Name” FROM employees

Number Name

AAAA Greg

AAAB Mathew

AAAC John

AAAD Barry

The above example replaces the column names from the table with the literal column aliases
defined in the SELECT clause.

Example 2
Using column aliases

SELECT empno AS “Number”, empname AS “Name” FROM employees

Number Name

AAAA Greg

AAAB Mathew

AAAC John

AAAD Barry

The above example is exactly the same as example 1 but is easier to read because of the use of
the AS keyword.

2.9 Concatenation Operator
Columns can be merged together to form a single column in the SQL statement output. This is
achieved by using the concatenation operator (||).

Example 1
Using the concatenation operator

SELECT empno||empname AS “Names” FROM employees

Names

AAAAGreg

AAABMathew

AAACJohn

AAADBarry

The above example concatenates the empno and empname columns into one column under the
alias Names.

2.10 Literal Strings
Literals are free text that appear in the SELECT clause that do not identify any column name or
column alias. The literal value included in the SELECT clause will be displayed for every row
retuned from the SQL statement.

Rules for literals,

 Dates must be enclosed in single quotes.

 Strings must be included in single quotes.

 Numeric literals do not require single quotes.

Example 1
Using literal values

SELECT ‘Number :’||empno, ‘Name:’||empname FROM employees

Number :||empno Name:||empname

Number:AAAA Name:Greg

Number:AAAB Name:Mathew

Number:AAAC Name:John

Number:AAAD Name:Barry

The above example inserts the literal values ‘Number:’ and ‘Name:’ whilst using the concatenate
operator.

2.11 Duplicate Rows
The default for SQL statement processing is to display all rows including duplicate rows. In order
to eliminate duplicate rows we use the reserved word DISTINCT immediately after the SELECT
clause.

Example 1

The below example displays all rows including all duplicate values

SELECT salary FROM employees

salary

10000

10000

10000

Example 2

The below example eliminates duplicate rows because DUPLICATE is used

SELECT DISTINCT salary FROM employees

salary

10000

2.12 Summary

 The SELECT statement is used for retrieving data from the database.

 The SELECT and FROM clauses form the basis of all SQL statements.

 List the columns to display by placing the column names after the SELECT clause.

 List the tables to read from by placing the table names after the FROM clause.

 Use the asterisk (*) to display all columns.

 Null values means no data.

 Arithmetic expressions using null values result in null values.

 Column aliases are used to improve the legibility of column headings.

 Use the concatenation operator (||) to merge columns in the SQL results.

 Literal strings are free form text displayed for every row returned in an SQL statement.

 Duplicate rows are removed with the use of the reserved word DISTINCT.

2.13 Exercises

1. Display all columns from the employees table.
2. Display the empno and empname from the employees table.
3. Display the empno and empanme columns of the employees table in a concatenated

format with a column alias of “Emp Details”.
4. Display all distinct values from salary column in the of employees table.

3. Data Conditioning
3.1 Objectives
After this chapter you should be able to perform the following,

 Limit the number of rows returned from an SQL query.

 Sort the rows returned from an SQL query.

3.2 Test Data
The below table information is used as test data for the examples shown throughout this chapter.

TABLE : employees

empno empname salary manager

AAAA Greg AAAC

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAA_E Ben 5000 AAAD

3.3 Limiting Rows
The method of limiting the amount of data displayed by an SQL query is performed using the
WHERE clause. The WHERE clause places constraints on the data being selected, this means
that only rows that match a certain condition are displayed.

The WHERE clause comes immediately after the FROM clause and has the following elements,

 Column name

 Condition

 Column name, constant, literal values(s)

Example 1
The below example displays all rows that meet the condition in the WHERE clause

SELECT * FROM employees WHERE salary = 10000

empno empname salary manager

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

The format of the condition used in the above example is as follows,
WHERE Column name(salary) Condition(=) Literal value(10000)

3.4 Using Literals
Literals are values used for searching when using the WHERE clause. When using literals in the
WHERE clause certain rules must be followed as per below,

 Dates must be enclosed in single quotes.

 The default date format is DD-MON-RR.

 Strings must be included in single quotes.

 Numeric literals do not require single quotes.

Example 1
The below example displays all rows where the empname columns is equal to the literal ‘Barry’

SELECT * FROM employees WHERE empname = ‘BARRY’

empno empname salary Manager

0 rows selected

The example failed to return any rows because the WHERE condition was not meet. This is
because literal strings are case sensitive.

Example 2
The below example displays all rows that meet the condition in the WHERE clause

SELECT * FROM employees WHERE empname = ‘Barry’

empno empname salary Manager

AAAD Barry 10000

The example returned rows because the WHERE condition was meet. This is because the
expression empname = ‘Barry’ is using the correct case.

3.5 Conditional Operators
Conditional operators are used to determine the condition under which data is selected. The
following conditional operators can be used within the WHERE clause,

 = Equal to.

 > Greater than.

 >= Greater than or equal to.

 < Less than.

 <= Less than or equal to.

 <> Not equal to.

 != Not equal to.

 ^= Not equal to.

Rules for usage in the WHERE clause,

 Column aliases cannot be used in the WHERE clause.

Example 1

The below examples list various ways to use conditional operators
WHERE salary > 1000
WHERE empname <> ‘John’
WHERE salary <= 20000

Example 2
This example will return all rows that meet the expression in the WHERE clause

SELECT * FROM employees WHERE salary <= 10000

empno empname salary manager

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAA_E Ben 5000 AAAD

Only the rows that have a salary less than or equal to 10000 are displayed.

3.6 Additional Conditional Operators
The additional conditional operators listed below can also be used to determine the condition
under which data is selected.

 BETWEEN, AND Between two values.

 IN In a list of values.

 LIKE Matches a string sequence.

 IS NULL Is a null value.

3.6.1 The BETEEN Conditional Operator
The BETWEEN, AND conditional operators are used to select values that are between a range of
two values. The BETWEEN conditional operator test if a value falls in the range of a lower limit
and an upper limit as per example 1.

3.6.2 The IN Conditional Operator
The IN conditional operator (also known as the membership operator) is used to search for a
specific value in a list of values as per example 2. The same literal rules mentioned in section 3.4
apply to the list of values used with the IN conditional operator. The list of values defined can be of
any data type.

3.6.3 The LIKE Conditional Operator
The LIKE conditional operator is used to perform wildcard searches on literal string values as per
example 3. The actual characters used to represent wildcards are as per below,

 % Indicates any sequence of characters.

 _ Indicates a single character.

 \ Escape Option, used to search for the actual % and _ characters.

The two wildcard characters can be combined to search for certain characters in a specific position
as per example 4. If there is a requirement to search for the actual wildcard characters “%” or “_”
then the ESCAPE option is used as per example 5.

3.6.4 The NULL/NOT NULL Conditional Operator
The IS NULL and the IS NOT NULL conditional operators are used to search for null/non null
values as per example 6. Because nulls do not actually equal a value we cannot use the equals”=”
or not equals“<>” operator.

Example 1
This example returns rows that fall between the range of 10000 and 20000

SELECT * FROM employees WHERE salary BETWEEN 10000 and 20000

empno empname salary manager

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

Example 2
This example returns rows that exist in the list of values

SELECT * FROM employees WHERE empname IN (‘Mathew’,’John’)

empno empname salary manager

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

Example 3
This example returns rows that have the character ‘M’ starting in the empname column

SELECT * FROM employees WHERE empname LIKE (‘M%’)

empno empname salary Manager

AAAB Mathew 10000 AAAC

Example 4
This example returns rows with ‘a’ as the second character of the empname column

SELECT * FROM employees WHERE empname LIKE (‘_a%%’)

empno empname salary manager

AAAB Mathew 10000 AAAC

AAAD Barry 10000

Example 5
This example returns rows that have the character “_” in the empno column

SELECT * FROM employees WHERE empno LIKE (‘%_\%’) ESCAPE ‘\’

empno empname salary manager

AAA_E Ben 5000 AAAD

Example 6
This example returns rows that have a null value in the manager column

SELECT * FROM employees WHERE manager IS NULL

empno empname salary manager

AAAD Barry 10000

If the above example used the IS NOT NULL conditional operator then all rows that were not null
would be displayed.

3.7 Logical Conditional Operators
Logical operators are used to combine multiple conditions of an SQL expression. Data is only
returned if the overall results of the SQL expression is true.

The logical conditional operators are as follows,

 AND Evaluates to true if both conditions are true.

 OR Evaluates to true if either conditions are true.

 NOT Evaluates to true if the next condition is false.

Example 1
The AND conditional operator

SELECT * FROM employees WHERE salary = 1000 AND empname = ‘Mathew’

empno empname salary manager

AAAB Mathew 10000 AAAC

Example 2
The OR conditional operator

SELECT * FROM employees WHERE empno = ‘AAA_E’ or empname = ‘Greg’

empno empname salary manager

AAAA Greg AAAC

AAA_E Ben 5000 AAAD

Example 3
The NOT conditional operator

SELECT * FROM employees WHERE salary NOT IN (10000)

empno empname salary manager

AAAA Greg AAAC

AAA_E Ben 5000 AAAD

3.8 Rules of Precedence
The rules of precedence are used to determine the order in which SQL expressions are evaluated.
As with general arithmetic operators the rules of precedence can also be overridden with the use
of parenthesis. The conditional operators below are listed in order of evaluation.

1) Arithmetic operators
2) Concatenation operator
3) Comparison conditions
4) IS NULL, IS NOT NULL, LIKE, [NOT] IN
5) [NOT] BETWEEN
6) NOT logical condition
7) AND logical condition

8) OR logical condition

Example 1
Rules of precedence example where the AND condition is evaluated first

SELECT * FROM employees WHERE
empname = ‘Greg’ OR
empname = ‘Mathew’ AND
salary = 10000
empno empname salary manager

AAAA Greg AAAC

AAAB Mathew 10000 AAAC

Example 2
Rules of precedence example where the AND condition is evaluated first

SELECT * FROM employees WHERE
empname = ‘Greg’ AND
empname = ‘Mathew’ OR
salary = 10000
empno empname salary manager

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

3.9 ORDER BY Clause
The ORDER BY clause is the last statement in the SELECT statement. It is used to sort the
results of an SQL expression is a descending or ascending (default) order. The reserved words
ASC (ascending) and DESC (descending) are used to determine the sort order.

The value to sort by can be of the following,

 An expression.

 A column alias.

 A column name.

 A column number.

When sorting in the default sort order of ascending data is displayed in the following order,

 Nulls are displayed last using the default order of ascending and first if descending is used.

 Numeric values are displayed from lowest to highest.

 Character vales are ordered by ASCII value from lowest to highest.

The ORDER BY clause can also be used with the following techniques,

 Sorted data using multiple columns.

 Sorting data that is not defined in the SELECT clause.

Example 1
The below example displays all rows and sort by empname

SELECT * FROM employees ORDER BY empname

empno empname salary manager

AAAD Barry 10000

AAA_E Ben 5000 AAAD

AAAA Greg AAAC

AAAC John 10000 AAAD

AAAB Mathew 10000 AAAC

The above example uses the default order of ascending order

Example 2
The below example sorts in descending order

SELECT * FROM employees ORDER BY empname DESC

empno empname salary manager

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAA Greg AAAC

AAA_E Ben 5000 AAAD

AAAD Barry 10000

Example 3
The below example sorts in ascending order using a column alias

SELECT emp, empname Emp, salart, manager FROM employees ORDER BY Emp

empno Emp salary manager

AAAD Barry 10000

AAA_E Ben 5000 AAAD

AAAA Greg AAAC

AAAC John 10000 AAAD

AAAB Mathew 10000 AAAC

Example 4
The below example displays all rows and is sorted using a column number

SELECT * FROM employees ORDER BY 2

empno empname salary manager

AAAD Barry 10000

AAA_E Ben 5000 AAAD

AAAA Greg AAAC

AAAC John 10000 AAAD

AAAB Mathew 10000 AAAC

Example 5
The below example displays all rows and is sorted using two column names

SELECT * FROM employees ORDER BY salary, manager

empno empname salary manager

AAA_E Ben 5000 AAAD

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAAA Greg AAAC

3.10 Summary

 The WHERE clause is used to limit data returned by an SQL expression.

 Certain rules for literals must be followed using the WHERE clause.

 Conditional operators are used to determine the condition under which data is selected.

 Logical operators are used to combine multiple conditions of an SQL expression.

 The rules of precedence are used to determine the order in which SQL expressions are
evaluated.

 The ORDER BY clause us used to sort the results of an SQL expression is a particular
order.

3.11 Exercises

 Select all rows from the employees table where salary is between 10000 and 20000 and
order the output on the empname column in descending order.

 Select all rows from the employees table where salary equals 10000 and empname equals
Greg.

 Select all rows from employees table where the salary column is null and the manager
columns is null.

 Select all rows from the employees table using the following conditions,
- empname equals Greg

OR
- empname equals Mathew AND salary = 10000

4. Single Row Functions
4.1 Objectives
After this chapter you should be able to perform the following,

 Use various types of character, number and date type functions in SQL expressions.

 Use various types of conversion functions.

4.2 Test Data
The below table information is used as test data for the examples shown throughout this chapter.

TABLE : employees

empno empname Salary manager

AAAA Greg AAAC

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAA_E John paul 5000 AAAD

4.3 Single Row Functions
Single row functions are used to perform the following,

 Data calculation and manipulation.

 Data formatting.

 Data type conversions.

Functions are called within the block of the SQL statement. Most of the times the function is
passed arguments that are used in the functions processing. The function then accepts the
arguments and uses them with its own set of instructions to produce a set of results.

Functions will accept any of the following type of arguments,

 Constant Value.

 Pre-defined Variable.

 Column name.

 Expression.

Functions have the following powerful capabilities,

 Functions can be nested within functions.

 Functions can be called in the SELECT, WHERE and ORDER BY clauses.

Single row functions are used on individual rows. They return one set of results per row. Singe row
functions are divided into different classes,

 Character functions Accept character type arguments and return both
characters and numbers.

 Number functions Accept numeric type arguments and return numeric values.

 Date functions Accept date type arguments and return date type value.
However, the function MONTHS_BETWEEN returns a
Numeric value.

 Date type conversion Converts one data type to another.

 Other functions NVL, NVL2, NULLIF, COALSECE, CASE, DECODE.

 Conditional functions Implements if-then-else logic in SQL statements.

PROCESSING

FUNCTION

INPUT

Argument(s)

OUTPUT

Result(s)

4.4 Character Functions
Character functions are used to manipulate and examine characters within a string. Character
functions can return both character and numeric values. There are two types of character
manipulation functions,

4.4.1 Case Manipulation Functions
Case manipulation functions are used to change the case of characters in a string. The three case
manipulation functions are LOWER, UPPER and INITCAP.

4.4.1.1 LOWER
Converts a string to lowercase. The usage of the LOWER function requires one mandatory
argument as per below,

LOWER(column/expression)

String to convert to lower case. This can be a column
name or an expression.
Function call.

Example 1
This example of the LOWER function converts all character in the empname column to lowercase

SELECT empno, LOWER(empname), salary, manager from employees

empno LOWER
(empname)

Salary manager

AAAA Greg AAAC

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAA_E john paul 5000 AAAD

4.4.1.2 UPPER
Converts a string to uppercase. The usage of the UPPER function requires one mandatory
argument as per below,

UPPER(column/expression)

String to convert to upper case. This can be a column
name or an expression.
Function call.

Example 1
This example of the UPPER function converts all character in the empname column to lowercase

SELECT empno, UPPER(empname), salary, manager from employees

empno UPPER
(empname)

Salary manager

AAAA GREG AAAC

AAAB MATHEW 10000 AAAC

AAAC JOHN 10000 AAAD

AAAD BARRY 10000

AAA_E JOHN PAUL 5000 AAAD

4.4.1.3 INITCAP
Converts the first character of each word in a string to uppercase and the rest to lowercase. The
usage of the INITCAP function requires one mandatory argument as per below,

INITCAP(column/expression)

String to perform conversion on. This can be a column
name or an expression.
Function call.

Example 1
This example of the INITCAP function performs a conversion on the empname column

SELECT empno, INITCAP(empname), salary, manager from employees

empno INITCAP
(empname)

Salary Manager

AAAA Greg AAAC

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAA_E John Paul 5000 AAAD

4.4.2 Character Manipulation Functions
There are various types of character manipulation functions. Character manipulation functions are
used to format and manipulate the characters of a string. This section explains some of the
commonly used character manipulation functions.

4.4.2.1 CONCAT
The CONCAT function combines two string into one like the “||” operator. Unlike the “||” operator
the CONCAT function only allows the combination of two strings.

CONCAT(column1/expression1, column2/expression2)

First part of string combination.
This can be a column name or an
expression.
Second part of string combination.
This can be a column name or an
expression.
Function call.

Example 1
This example of the CONCAT function combines the empno and empname columns

SELECT empno, CONCAT(empno, empname), salary, manager from employees

empno CONCAT
(empno, empname)

Salary manager

AAAA AAAA Greg AAAC

AAAB AAAB Mathew 10000 AAAC

AAAC AAAC John 10000 AAAD

AAAD AAAD Barry 10000

AAA_E AAA_E John Paul 5000 AAAD

4.4.2.2 LENGTH
The LENGTH function returns the length of a string.

LENGTH(column1/expression1)
 String to return length of. This can

be a column name or an expression.
Function call.

Example 1
This example of the LENGTH function return the length of the empname column

SELECT empno, LENGTH(empname), salary, manager from employees

empno LENGTH
(empname)

Salary manager

AAAA 4 AAAC

AAAB 6 10000 AAAC

AAAC 4 10000 AAAD

AAAD 5 10000

AAA_E 9 5000 AAAD

4.4.2.3 SUBSTR
The SUBSTR function copies a sub-string from a string based on certain parameters passed into
the function.

Rules for using the SUBSTR function,

 If pos is negative then the copy begins at the end of the string.

 If count is omitted then all characters from the start of the copy to the end of the string are
copied.

SUBSTR(column1/expression1, pos, count)
 Number of characters to copy.

Position is string to start copying
from.
String to copy from. This can be a
column name or an expression.
Function call.

Example 1
This example of the SUBSTR function copies one character from the empno column

SELECT SUBSTR(empno,4,1), empname, salary, manager from employees

empno SUBSTR
(empno,4,1)

Salary manager

AAAA A AAAC

AAAB B 10000 AAAC

AAAC C 10000 AAAD

AAAD D 10000

AAAA_E _ 5000 AAAD

4.4.2.4 INSTR
The INSTR function returns the starting position of a sequence of characters.

INSTR(column1/expression1, ‘string’, start, occurrence)
 Which occurrence of the sub-string

to search for. The default is 1 (The first
occurrence).
Which position in the string to start searching.
The default is position 1.

 Sub-string to search for.
String to search in. This can
be a column name or an expression.
Function call.

Example 1
This example of the INSTR function return the length of the empname column

SELECT empno, INSTR(empname,’a’,1,1), salary, manager from employees

empno INSTR

(empname,’a’,1,1)

salary manager

AAAA 0 AAAC

AAAB 2 10000 AAAC

AAAC 0 10000 AAAD

AAAD 2 10000

AAA_E 7 5000 AAAD

4.2.2.5 LPAD/RPAD
The LPAD and RPAD functions justify the characters in the string to left (RPAD) or to the right
(LPAD). The justification works by padding out the string with a certain sequence of characters.

LPAD/RPAD(column1/expression1, length, ‘string’)
 This is the character used to pad

out the string.
 Required length of string.

String to justify. This can be a
column name or an expression.
Function call.

Example 1
This example of the LPAD function will right justify the empname column using the asterisk ‘*’
character

SELECT empno, LPAD(empname, 15, ‘*’), salary, manager from employees

empno LPAD
(empname, 15, ‘*’)

Salary manager

AAAA ***********Greg AAAC

AAAB *********Mathew 10000 AAAC

AAAC ***********John 10000 AAAD

AAAD **********Barry 10000

AAA_E ******John Paul 5000 AAAD

4.2.2.6 TRIM
The TRIM function removes leading or trailing characters from a string. Characters can be
removed from the start, finish or both ends of the string by using one of the following reserved
words as a parameter in the TRIM function,

 LEADING Remove characters from the start of the string.

 TRAILING Remove characters from the end of the string.

 BOTH Remove characters from the start and end of the string.

If none of the above reserved words are used the default operation is BOTH.

TRIM(LEADING ‘char’ FROM column1/expression1)

String to trim characters from. This
can be a column name or an
expression.

 Required keyword FROM.
 Character to remove from the string.

TRIM operations. This is LEADING,
TRAILING or BOTH.
Function call.

Example 1
This example uses the TRIM function to remove the ‘G’ character from the empname column.

SELECT empno, TRIM(LEADING ‘G’ FROM empname), salary, manager from
employees

empno TRIM (LEADING ‘G’
FROM empname)

salary manager

AAAA reg AAAC

AAAB Mathew 10000 AAAC

AAAC John 10000 AAAD

AAAD Barry 10000

AAA_E John Paul 5000 AAAD

4.5 Number Functions
Number functions are used to perform arithmetic operations on numeric values. There are various
types of number functions. Number functions take numeric values as arguments in order to return
a numeric value. This section explains some of the most commonly used number functions.

4.5.1 TRUNC
The TRUNC function truncates a number to a certain amount of decimal places.

TRUNC(column1/expression1, DEC)

Number of decimal places to truncate the number to.
This is the numeric value to truncate. This can be a
column name or an expression.
Function call.

The argument passed in as DEC effects the outcome of the number in the following manner,

 If DEC is not specified then the default is zero.

 If DEC is negative the decimal place is shifted to the left.

Example 1
This example of the TRUNC function truncates salary/3 to 2 decimal places

SELECT empno, empname, TRUNC(salary/3, 2), manager from employees

empno empname TRUNC
(salary/3, 2)

manager

AAAA Greg AAAC

AAAB Mathew 3333.33 AAAC

AAAC John 3333.33 AAAD

AAAD Barry 3333.33

AAA_E John Paul 1666.66 AAAD

4.5.2 ROUND
The ROUND function rounds a number to a certain amount of decimal places.

ROUND(column1/expression1, DEC)

Number of decimal places to round the number to.
This is the numeric value to round. This can be a
column name or an expression.
Function call.

The argument passed in as DEC effects the outcome of the number in the following manner,

 If DEC is not specified then the default is zero.

 If DEC is negative the decimal place is shifted to the left.

Example 1
This example of the ROUND function rounds salary/3 to 2 decimal places

SELECT empno, empname, ROUND(salary/3, 2), manager from employees

empno empname ROUND
(salary/3, 2)

manager

AAAA Greg AAAC

AAAB Mathew 3333.33 AAAC

AAAC John 3333.33 AAAD

AAAD Barry 3333.33

AAA_E John Paul 1666.67 AAAD

4.5.3 MOD
The MOD function divides two numbers and returns the remainder. The MOD function can be
used to check if a number is odd or even.

MOD(column1/expression1, column1/expression1)

Number to divide. This can be a column name or an
expression.
Number to divide by. This can be a column name or
an expression.
Function call.

Example 1
This example of the MOD function divides salary by 3000 and returns the remainder

SELECT empno, empname, MOD(salary, 11), manager from employees

empno empname MOD
(salary, 3000)

manager

AAAA Greg AAAC

AAAB Mathew 1000 AAAC

AAAC John 1000 AAAD

AAAD Barry 1000

AAA_E John Paul 2000 AAAD

4.6 DATE Functions
Date functions are used to perform arithmetic operations on date datatypes. ORACLE stores the
date datatypes with the following characteristics,

 By default ORACLE stores dates using the below internal format,
- Century 20
- Year 03
- Month 09
- Day 30
- Hour 7
- Minute 11
- Second 23

 All dates must be in the range of “Jan 1, 4712BC” to “Dec 31, 9999AD”

 ORACLE uses the default date display format of DD-MMM-RR. This means that when a
date is displayed the century component of the date is dropped.

 DATE datatypes are stored as numbers. This means calculations can be performed on
dates using standard arithmetic operators as per below,

- DATE – DATE Calculate the number of days between two dates.
- DATE + number Add x number of days to a date.
- DATE + number/24 Add x number of hours to a date by dividing

number of hours by 24.

4.6.1 SYSDATE
The SYSDATE function returns the current database date and time. The SYSDATE can be used
in the SELECT clause and in expressions where the argument calls for a date datatype.

Example 1
The below example displays the current database date using the default date format of DD-MMM-
RR

SELECT SYSDATE FROM DUAL

SYSDATE

30-SEP-03

Example 2
The below example displays the number of days since 01/01/01

SELECT SYSDATE - TO_DATE('01-01-01', 'MM-DDD-RR') FROM DUAL

SYSDATE

1000

The use of the TO_DATE function and date formatting(‘MM-DDD-RR’) shall be discusses later in
this chapter

4.6.2 MONTHS_BETWEEN
The MONTHS_BETWEEN function returns a numeric value which indicates the duration in months
between two dates.

MONTHS_BETWEEN(col1/date1, col2/date2)

First date.
Second date.
Function call.

The result of the MONTHS_BETWEEN function has two segments. The first segment of the result
which is to the left of the decimal point is the number of days between the two dates. The second
segment of the result which is to the right of the decimal point indicates a portion of the reaming
month.

Example 1
The below example displays the number of months between the two dates

SELECT MONTHS_BETWEEN('10-NOV-2000','10-OCT-2000') FROM DUAL

MONTHS_BETWEEN('10-NOV-2000','10-OCT-2000')

1

Example 2
The below example displays the number of months between the two dates

SELECT MONTHS_BETWEEN('10-NOV-2000','11-OCT-2000') FROM DUAL

MONTHS_BETWEEN('10-NOV-2000','11-OCT-2000')

.967741935

In the above example there is not quite one month between the two dates.

4.6.3 ADD_MONTHS
The ADD_MONTHS function returns a date value which is the result of an addition between a date
and numeric value.

ADD_MONTHS(date1, column1/expression1)

Number of months to add to date.
Date to perform addition on.
Function call.

Example 1
The below example displays a date two months in advance of 10-NOV-2000

SELECT ADD_MONTHS('10-NOV-2000',2) FROM DUAL

ADD_MONTHS('10-NOV-2000',2)

11-JAN-2001

Example 2
The below example displays a date one month prior to 10-NOV-2000

SELECT ADD_MONTHS('10-NOV-2000',-1) FROM DUAL

ADD_MONTHS('10-NOV-2000',-1)

10-OCT-2000

4.6.4 NEXT_DAY
The NEXT_DAY function returns the date for the next weekday occurrence.

NEXT_DAY(date1, ‘THURSDAY’)

Weekday name.
Date to use in weekday calculation.
Function call.

Example 1
The below example displays the date of the next Thursday after 10-NOV-2000

SELECT NEXT_DAY('10-NOV-2000',’THURSDAY’) FROM DUAL

NEXT_DAY('10-NOV-2000',’THURSDAY’)

16-NOV-2000

4.6.5 LAST_DAY
The LAST_DAY function returns a date value indicating the last date in the month depending on
the date value passed into the function

LAST_DAY(date1)

Date to perform last day in month calculation on.
Function call.

Example 1
The below example displays the date of the next Thursday after 10-NOV-2000

SELECT LAST_DAY('10-NOV-2000') FROM DUAL

LAST_DAY('10-NOV-2000')

30-NOV-2000

4.6.6 ROUND and TRUNC with dates
The ROUND and TRUNC functions can be used for rounding and truncating dates to the nearest
month or year.

ROUND(date1, ‘MONTH/YEAR’)

Round or truncate the date to the closest
month or year .
Date to round or truncate.
Function call.

Example 1
The below example rounds the date to the closest month of the date passed to the ROUND
function

SELECT ROUND('20-NOV-2000',’MONTH’) FROM DUAL

ROUND('20-NOV-2000',’MONTH’)

01-DEC-2000

Example 2
The below example truncates the date to the year of the date passed to the TRUNC function

SELECT TRUNC('20-NOV-2000',’YEAR’) FROM DUAL

TRUNC('20-NOV-2000',’YEAR’)

01-JAN-2000

4.7 Conversion Functions
When the Oracle server is processing SQL statements it expects to find certain data types in
certain locations. If the data type found is not of the expected data type then the Oracle server
attempts a conversion to the correct data type. This is called implicit data type conversion. The
other type of data type conversion is called explicit data type conversion. This type of conversion is

If any data type conversion is unsuccessful the execution of the SQL statement results in an error.
Otherwise, the SQL statement is carried out and the results are displayed as per normal.

4.7.1 Implicit Data Type Conversion
The data types used during implicit data type conversion are as follows,

During assignment

From To

DATE, NUMBER VARCHAR2

VARCHAR2, CHAR DATE

VARCHAR2, CHAR NUMBER

During expression evaluation

From To

VARCHAR2, CHAR DATE

VARCHAR2, CHAR NUMBER

Example 1
The below example uses an implicit data type conversion

SELECT ROUND('20-NOV-2000',’MONTH’) FROM DUAL

ROUND('20-NOV-2000',’MONTH’)

01-DEC-2000

The string data type ’20-NOV-2000’ is converted to a date data type

4.7.2 Explicit Data Type Conversion
There are several conversion functions used for explicit data type conversions. Below are the most
common three,

 TO_CHAR Convert data type to a CHAR.

 TO_NUMBER Convert data type to a NUMBER.

 TO_DATE Convert data type to a DATE.

These three conversion functions are explained in detail later in this chapter.

Example 1
The below example uses an explicit data type conversion

SELECT TRUNC(TO_DATE('20-NOV-2000','DD-MM-YYYY'), 'YEAR') FROM DUAL

TRUNC(TO_DATE('20-NOV-2000','DD-MM-YYYY'), 'YEAR')

01-JAN-2000

4.7.3 TO_CHAR (With Dates)
The TO_CHAR function can be used to convert date data types into character data types. The
main purpose for this type of conversion is for formatting and display purposes.

TO_CHAR(date1, format/nlsparameter)

Date format model for conversion.
Date to convert.
Function call.

Rules used during conversion,

 The date format parameter can be replaced with the nlsparameter (national language
support). Each nlsparamter has a predefined date format.

 If the date format model or nlsparameter is omitted the default nlsparameters for the
session are used.

 The date format model must be enclosed in single quotes.

 Literals in the time format model need to be enclosed in double quotes.

 The value inside the date format model is case sensitive.

 Day and month names in the output are automatically padded with spaces.

Date format model

Element Description Type
BC or AD BC or AD indicator Date

B.C or A.D B.C or A.D indicator Date

DAY Name of day padded with spaces to a length of nine Date

D or DD or DDD Day of Weak, Month or Year. Date

DY Three letter abbreviation for the day of week Date

fm Fill mode. Remove leading spaces or suppress zeros Date

I, IY, IYY,IYYY One, two, three or four digit year Date

RR Century based on current year (0-49=20, 50-99=19) Date

J Julian day. Number of days since 31/12/4713 B.C Date

MM Month. Two digits Date

MONTH Name of month padded with spaces to a length of nine Date

MON Three character abbreviation for the month Date

Q Single digit representing quarter of the year Date

RM Month represented in Roman Numerals Date

SCC or CC Century. B.C indicated by a prefix of - Date

sp Spell out date Date

SYEAR or YEAR Year spelled out. B.C indicated by a prefix of - Date

th Use suffix of “th” on date Date

WW or W Week number of year or month Date

Y,YYY Year with comma included Date

YYYY or SYYYY Year. B.C indicated by a prefix of - Date

Y or YY or YYY Last one, two or three digits of year Date

The RR date format is used to return the century based on the current two digit year. If the two
digit year is between 0-49 then the 20th century is returned. If the two digit year is between 50-99
then the 19th century is returned.

Date format model (continued)

Element Description Type
AM or PM Indicates meridian Time

A.M. or P.M. Indicates meridian with decimal point Time

HH, HH12 or HH24 Hour of the day, or hour (1-12), or hour (0-23) Time

MI Minutes on the hour (0-59) Time

SS Seconds of the minute (0-59) Time

SSSSS Seconds of the day (0-86399) Time

/ . , : Punctuation used to separate time elements Time

“of the” Literal string used in time format model Time

Example 1
The below example formats the system date into the following,

 MM Two digit month

 / Date Separator

 YY Two digit year

SELECT TO_CHAR(SYSDATE, ‘MM/YY’) FROM DUAL

TO_CHAR(SYSDATE, ‘MM/YY’)

12/00

Only the number of month and year are displayed.

Example 2
The below example formats the system date into the following,

 HH24 Hour of the day in 24 hour time format

 : Time Separator

 MI Minutes of the hour

SELECT TO_CHAR(SYSDATE, ‘HH24:MI’) FROM DUAL

TO_CHAR(SYSDATE, ‘HH24:MI’)

17:34

Only the time component of the date is displayed because only the time elements from the date
format model are specified.

Example 3
The below example formats the system date into the following,

 DD Two digit day of month

 “th” Literal value “th”

 “of” Literal value “of”

 MONTH Name of month

 YYYY Four digit Year

SELECT TO_CHAR(SYSDATE, ‘DDth “of” MONTH YYYY’) FROM DUAL

TO_CHAR(SYSDATE, ‘DDth “of” MONTH YYYY’)

17th of Jan 2003

This example displays a full date including the literal words “th” and “of”

Example 4
The below example uses the RR date format to return a certain century.

SELECT TO_CHAR('01-JAN-1995', 'DD-Mon-YYRR') FROM DUAL

TO_DATE(’01-JAN-95’, ‘DD-Mon-YYRR’)

01-Jan-95

4.7.4 TO_CHAR (With Numbers)
The TO_CHAR function is also used to convert number data types into character data types. The
main purpose for this type of conversion is for formatting and displaying.

TO_CHAR(number1, format)

Number format model for conversion.
Number to convert.
Function call.

Rules used during conversion,

 If the decimal value will not fit in the format model then it is rounded up to match the format
model.

 If a number is to big to fit in the format model then a sequence of “#” characters are
displayed instead.

Number format model

Element Description
9 Indicates a position where a number can be displayed

0 Displays zero if no digit is present

$ Display a dollar sign

L Display a local currency symbol

U Displays the dual currency symbol. E.g, Euro

. Display a decimal point

, Display a comma

MI Display a minus sign to the right of the number

PR Display parenthesize around number for negative values

EEEE Display number in scientific notation

V Multiply number by 10 times

B Suppress zeros

X Displays number in hexadecimal format

Example 1
The below example displays the value 12345 using the formats from the number model,

 $ Display dollar sign

 9 Display number if required

 , Display comma at thousands separator

 . Display decimal point to 2 decimal places

 0 Display zero if no digit is present

SELECT TO_CHAR(12345, ‘$999,999.00’) FROM DUAL

TO_CHAR(12345, ‘$999,999.00’)

$12,345.00

Example 2
The below example displays the value 12345 using the formats from the number model,

 MI Display a minus sign to the right of the number

 9 Display number if required

 V Multiply number by 100

SELECT TO_CHAR(-12345, ‘MI999999V9’) FROM DUAL

TO_CHAR(-12345, ‘MI9999999V99’)

1234500-

4.7.5 TO_DATE
The TO_DATE function can be used to convert a string to a date. The format model used with this
function is identical to that shown previously in this chapter.

TO_DATE(String1, format)

Date format model for conversion.
String to convert.
Function call.

When using the TO_DATE function it is possible to introduce a strict method of conversion
validation by using what is known as the format exact or fx” modifier. The “fx” modified tells the
TO_DATE conversion function to perform exact character matching between the string and the
format model.

Rules used with the “fx” modifier,

 The literal value in the string must match the corresponding format model.

 Additional blanks in the string are inhibited.

 Numeric literals must be the same length ad the format model. This means padding out the
length of the string with zeros to match the length of the format model.

Rules used without the “fx” modifier,

 Any blanks in the string are ignored.

 Leading zeros can be omitted from numeric literals.

The Oracle Server will return an error if any of the above conditions are not meet.

Example 1
The below example converts the literal date string ‘01-NOV-03’ to a date datatype

SELECT TO_DATE('01-NOV-03','DD-Mon-YYYY') FROM DUAL

TO_DATE('01-NOV-2003','DD-Mon-YYYY')

01-NOV-03

Example 2
The below example attempts to convert the literal string ‘ 1-NOV-03’ to a data datatype.

SELECT TO_DATE(' 1-NOV-2003','fxDD-Mon-YYYY') FROM DUAL

ERROR at line 1:
ORA-01858: a non-numeric character was found where a numeric was expected

The datatype conversion fails because the literal date string contains a blank character at position
1.

4.7.6 TO_NUMBER
The TO_NUMBER function can be used to convert a string to a number. The format model used
with this function is identical to that shown previously in this chapter.

TO_NUMBER(String1, format)

Number format model for conversion.
String to convert.
Function call.

Example 1
The below example converts the literal number string ‘255’ into its hexadecimal representation

SELECT TO_NUMBER(‘255’, ‘XX’) FROM DUAL

TO_NUMBER(‘255’, ‘XX’)

FF

Example 2
The below example converts the literal number string ‘$12,345.00’ into a number datatype.

SELECT TO_NUMBER(‘$12,345’, ‘$999,999.00’) FROM DUAL

TO_NUMBER(‘$12,345.00’, ‘‘$999,999.00’)

12345

4.8 Nesting Functions
Calling a function from within a function is knows as nesting functions. You can nest functions to
any level you like but the function execution sequence always occurs from the deepest level
upwards.

FUNCTION1(FUNCTION2(FUNCTION3(String1,String2), String3), String 4)
 Function arguments

Function call 3
Function call 2
Function call 1

The nested functions above will execute in order of Funtion3, Function2 and last of all Function1.
Notice that the results of the nested functions are being used as arguments for the next function
call, this is the main objective of nesting functions.

Example 1
The below example converts the date datatype into a string and then converts it to uppercase.

SELECT UPPER(TO_CHAR(’01-Nov-2003’,’DD-MON-YYYY)) FROM DUAL

UPPER(TO_CHAR(’01-Nov-2003’,’DD-MON-YYYY))

01-NOV-03

4.9 Generic Functions
This chapter has only looked at only a few of the hundreds of available SQL functions. This section
will now discuss some of the more widely used generic functions.

4.9.1 NVL
The NVL function returns a value if a particular column or expression is null.

NVL(column1/expression1, value1)

Return this value if null test was true.
Value to test for null
Function call.

Rules for NVL,

 If coumn1/expression1 is null NVL returns value1

 If column1/expression1 is not null NVL returns column1/expression1

The datatype of the column1/expression1 can be of any datatype. However, the data that is
returned in from NVL will always be of the same datatype as column1/expression1.
If the datatypes of column1/expression1 and value1 are different the NVL function will perform
an implicit dattype conversion on value1 to synchronize the datatypes.

Example 1
The below example returns zero because the salary column is null

SELECT NVL(salary, 0) FROM employees WHERE emp = ‘AAAA’

NVL(salary, 0)

0

Example 2
The below example returns 10000 because the salary column is not null

SELECT emp, NVL(salary, 0) FROM employees

Emp NVL(salary, 0)

AAAA 0

AAAB 10000

AAAC 10000

AAAD 10000

AAA_E 5000

4.9.2 NVL2
The NVL2 function returns one of two values depending if a particular column or expression is null.

NVL2(column1/expression1, value1, value2)
 Return value2 if null test was true.

Return value1 if null test was false.
Value to test for null
Function call.

Rules for NVL2,

 If coumn1/expression1 is null NVL2 returns value1

 If column1/expression1 is not null NVL2 returns value2

The datatype of the column1/expression1 can be of any datatype. However, value1 and value2
must always be of the same datatype. If the datatypes of value1 and value2 are different the
NVL2 function will perform an implicit dattype conversion on value2 to the same datatype as
value1. The datatype returned by NVL2 will be of the same datatype as value1. If value1 was a
string then a VARCHAR2 datatype will be returned.

Example 1
The below example test for a null value and returns either sala or salb

SELECT NVL2(salary, ‘sala’,’salb’) FROM employees WHERE emp = ‘AAAA’

NVL2(salary, ‘sala’,’salb’)

Salb

Because the value tested is null salb is returned

Example 2
The below example tests for a null value and returns wither sala or salb

SELECT emp, NVL2(salary, ‘sala’,’salb’) FROM employees

emp NVL2(salary, ‘sala’,’salb’)

AAAA salb

AAAB sala

AAAC sala

AAAD sala

AAA_E sala

According to the above results only employee AAAA has a null value in salary

4.9.3 NULLIF
The NULLIF function compare two values and returns a value(or null) depending on the results of
the comparison.

NULLIF(column1/expression1, column2/expression2)

Value to compare.
Value to compare against.
Function call.

Rules for NULLIF,

 If coumn1/expression1 is equal to column2/expression2 then NULLIF returns null.

 If coumn1/expression1 is not equal to column2/expression2 then NULLIF returns
coumn1/expression1.

Example 1
The below example compares salary against 10000.

SELECT emp, NULLIF(salary, 10000) FROM employees

emp emp NULLIF(salary, 10000)

AAAA

AAAB

AAAC

AAAD

AAA_E 5000

The above results indicate that only employee AAA_E has a salary other than 10000. However,
this is misleading because employee AAAA has a salary other than 10000.

4.9.4 COALESCE
The COALESCE function evaluates every expression in the argument list from left to right. The
COALESCE function will return the first expression which does not evaluate to null.

COALESCE(column1/expression1, column2/expression2, column3/expression3)

 Last expression to test
Second expression to test
First expression to test
Function call

Rules for COALESCE,

 COALESCE will return column1/expression1 if it is not null.

 COALESCE will return column2/expression2 if it is not null and column1/expression1 is
null.

 COALESCE will return column3/expression3 if it is not null and column1/expression1
and column2/expression2 are null.

Example 1
The below example return the fist expression which evaluates to a non null value

SELECT COALESCE(salary,manager,emp) FROM employees
WHERE emp = ‘AAAA’

COALESCE(salary,manager,emp)

AAAC

4.10 Conditional Functions
Oracle SQL provides functionality for If-Then-Else logic which can be embedded into SQL
statements. This logic can be used with the CASE and DECODE functions as per below.

4.10.1 CASE
The CASE function provides If-Then-Else logic which is embedded into a SELECT statement in
the following format,

CASE column1/expression1 This is the value to test
 WHEN result1 RETURN value1 Return value1 if column1/expression1 = result1

 WHEN result2 RETURN value2 Return value2 if column1/expression1 = result2
 WHEN result3 RETURN value3 Return value3 if column1/expression1 = result3
ELSE
 RETURN value4 Return value4 if nothing = column1/expression1
END

Rules for the CASE function,

 The CASE function returns the first value# in the list where the result# equals
column1/expression1.

 If none of result# equals column1/expression1 then value4 is returned.

 If the CASE function does not include an ELSE section and none of value# equals
column/expression1 then CASE returns null.

Example 1
The below example displays a calculated value in SALARY_BONUS depending on the value in
SALARY.

SELECT emp, salary
CASE salary
 WHEN 10000 RETURN salary + 1000
 WHEN 5000 RETURN salary + 2000
ELSE
 RETURN salary + 3000
END “SALARY_BONUS”
FROM employees
emp salary SALARY_BONUS

AAAA 3000

AAAB 10000 11000

AAAC 10000 11000

AAAD 10000 11000

AAA_E 5000 7000

4.10.2 DECODE
The DECODE function provides If-Then-Else logic which is embedded into a SELECT statement
in the following format,

DECODE(column1/expression1,value1,result1,value2,result2,result3)

 Return if all tests are not equal
Return if value2 = column1/expression1
Compare against column1/expression1

 Return if value1 = column1/expression1
 Compare against column1/expression1

 This is the value to test
Function call.

Rules for the DECODE function,

 result3 will be retuned if column1/expression1 does not equal value1,value2

 If result3 is not included and none of the equality tests are true the DECODE returns null.

 DECODE will compare column1/expression1 against value1,value2 and return result#.

 The value# parameters are compared against column1/expression1 from left to right.

 DECODE will return the first value# when a match is encountered.

Example 1
The below example displays a calculated value in SALARY_BONUS depending on the value in
SALARY.

SELECT emp, salary
DECODE(salary, 10000, 11000, 5000, 7000, 3000) “SALARY_BONUS”
FROM employees

emp salary SALARY_BONUS

AAAA 3000

AAAB 10000 11000

AAAC 10000 11000

AAAD 10000 11000

AAA_E 5000 7000

Example 2
The below example displays EMP_CATEGORY based on the fourth character of the emp column

SELECT emp, salary
DECODE(substr(emp,4,1), ‘A’, ‘Class A’, ‘B’, ‘Class B’, ‘C’, ‘Class C’, ‘D’, ‘Class D’, ‘Unknown’)
“EMP_CATEGORY”
FROM employees

emp salary EMP_CATEGORY

AAAA Class A

AAAB 10000 Class B

AAAC 10000 Class C

AAAD 10000 Class D

AAA_E 5000 Unknown

4.11 Summary
 Single row functions are used for data calculation, manipulation, formatting and data type

conversion.

 Single row functions are categorized into the following groups,
- Character functions
- Number functions
- Date functions
- Datetype conversion functions
- Generic functions

 Character functions are used for character/string manipulation.

 Number functions are used for arithmetic operations on numeric values.

 Date functions are used for date arithmetic operations of date values.

 Datatype conversion functions are used to convert one datatype to another.

 Conditional functions are used when if-then-else logic is required in am SQL expression.

4.12 Exercises
A. Display all the records of the employees table with the empname column displayed in

uppercase.
B. Display all the records of the employees table with the emp and manager columns

concatenated together.
C. Display all the records of the employees table with the salary column divided by three and

rounded to two decimal places.
D. Display the string ‘17th November 2003 23:59.00’ as a date datatype formatted to17-NOV-

2003’.
E. What is the total amount of nested functions permitted?
F. Display the date ’17-NOV-2003’ as a char datatype formatted to ‘17th November 2003’.
G. Display the number 12882.4598 as a char datatype formatted to ‘$12,882.46’.
H. Display all the records of the employees table with 20% added to the salary field. If the

salary field is null then display the string ‘No Salary’.
I. Use the COALESCE function to display the salary and manager fields in the one column.
J. Use the DECODE function to display the following,

Field Condition Display Value

emp none emp

salary Salary = 1000 “10 Gs”

Salary = 5000 “5 Gs”

else “Zero”

K. Use the CASE function to display the same result from question I.
L. What is an explicit datatype conversion?
M. What is an implicit datatype conversion?

5. Handling Multiple Tables
5.1 Objectives
After this chapter you should be able to perform the following,

 Retrieve data from multiple tables using the SELECT statement.

 Understand and use all type of joins.

5.2 Test Data
The below table information is used as test data for the examples shown throughout this chapter.

TABLE : customer

name postcode gender age

Smith 2232 M 35

Jones 2232 F 21

Simons 2199 M 50

Thirley 2245 F 56

Ravenwood 2245 M 28

Andrews 2345 M 43

TABLE : suburb

name postcode population statecode

Sutherland 2232 20001 NSW

Begsville 2245 1903 NSW

Nadenham 2199 12042 QLD

Grethem 3000 45322 VIC

TABLE : state

statecode state capital sales

NSW New South Wales Sydney 100009

VIC Victoria Melbourne 299009

WA Western Australia Perth 6700

TABLE : sales_cat

cat from_sale to_sale

Low 0 100000

Medium 100001 200000

High 200000 999999

TABLE : employees

code name position manager_code

1000 Jeff Sales Rep 2000

1001 Martin Sales Rep 2000

2000 Darren Sales Manager 3000

3000 Greg General Manger

5.3 Using Multiple Tables
Oracle allows you to combine the data from multiple tables in the SELECT statement. The join
between tables needs to be established by linking one or more columns from one table to another.

The diagram below illustrates a join of data between two tables giving the combined results in a
single row,

TABLE : customer TABLE : suburb

name Postcode postcode population

Smith 2232 2232 20001

Jones 2232 3000 1903

Simons 2199 2199 12042

Thirley 2245 2245 45322

Ravenwood 2245

Andrews 2345

customer.name customer.postcode suburb.postcode suburb.population

Ravenwood 2245 2245 45322

Thirley 2245 2245 45322

Simons 2199 2199 12042

Jones 2232 2232 20001

Smith 2232 2232 20001

When data form multiple tables is required a join must be established. A join links columns from
one table to another for purpose of returning related information from both tables. The above
results show that the join between the two columns is based on the postcode field. Note that the
information for Andrews is not displayed because no join between the two tables could be
established based on the postcode. To join the two tables we need to specify a join condition in
the WHERE clause of the SELECT statement.

For example, WHERE customer.postcode = suburb.postocde

You should always ensure that the join between your tables is present and correct. Any incorrect
or omitted joins will result in what is known as a Cartesian product. A Cartesian product will join
every row from every table specified in the SELECT clause resulting is an excessive and useless
amount of rows being displayed. A Cartesian product on the above example would link every row
from the customer table(6 rows) to the suburb table(4 rows) resulting in 24 rows being displayed.
To avoid the Cartesian product ensure that the join condition in your WHERE clause is present
and correct.

Note :
Unless there is a specific requirement to generate a large number for rows from a Cartesian
product you should always ensure that your join condition is correct. However, there may be
particular circumstances when there is a requirement for generating a Cartesian product, for
example, generating a large number of rows for test data.

5.4 Join Syntax And Rules
When joining data from multiple tables there is various rules and syntax regulations to follow as
per below,

Syntax Example 1
SELECT customer.name, customer.postcode, suburb.postcode, suburb.population
FROM customer, suburb
WHERE customer.postcode = suburb.postcode

Syntax Example 2
SELECT c.name, c.postcode, s.postcode, s.population
FROM customer c, suburb s
WHERE c.postcode = s.postcode AND
s.population > 25000

This is the join condition.
These are the tables to retrieve data from (These tables need to be joined by a common column).
These are the columns to display.

Join Rules
SELECT

 The SELECT clause identifies which columns from which table will be displayed.

 Column should also be prefixed to make the SQL expression more legible.

 As per normal SELECT statement execution, the SELECT clause includes all the columns
to be displayed. If the tables used in the join contain columns with identical names you
must prefix the column with the table name in the format of
<table_name>.<column_name> as per syntax example 1.

 Prefixing tables improves performance by providing the Oracle server with the information
about which table to find the column in.

FROM

 The FROM clause identifies which tables will be used in the join.

 Tables can be allocated an alias in the FROM clause as per syntax example 2.

 Table aliases must be no longer 30 characters.

 Once a table alias is defined it must be used to represent that table within the entire SQL
expressions.

 The table alias is only valid during the SQL expression in which it was defined.
WHERE

 To avoid Cartesian products be sure to include the correct number of joins in the WHERE
clause.

 The minimum number of joins to include in the WHERE clause is the number of tables in
the SELECT clause minus one.

 As per normal the WHERE clause can include the AND operator. This places further
constrictions on the data selected.

5.5 Join Types
The join types available in Oracle 9i are compliant with the ANSI SQL:1999 standard. There are
several types of joins available as per below,

Oracle join name Description

Equijoin Columns in tables are joined by the equality operator

Non-equijoin Columns in tables are joined by an operator other than the equality operator

Outer Join Columns that do not match the join are also displayed

Self Join Columns in a table are joined to other columns in the same table

5.5.1 Equijoin
An equijoin will join two tables based on one common column from each table. In order to make a
join from one table to another the value in the common columns must be identical.

SELECT tab1.col1, tab2.col1, tab2.col2 Select columns to display
FROM tab1, tab2 Choose tables to retrieve data from
WHERE tab1.col1 = tab2.col1 Establish the equijoin (=)

Example 1
The below example joins the suburb and state tables based on the statecode.

SELECT su.suburb,su.statecode,st.sales
FROM suburb su, state st
WHERE su.statecode = st.statecode
su.suburb su.statecode st.sales

Sutherland NSW 100009

Begsville NSW 100009

Grethem VIC 299009

SELECT c.suburb,c.statecode,s.sales

 The SELECT clause in Example 1 is selecting two columns from the suburb table and one
column from the state table.

FROM suburb su, state st

 The tables used are suburb and state which have been allocated an alias of su and st.
WHERE su.statecode = st.statecode

 The join condition in the WHERE clause links the two tables on the common column
statecode.

 Every join that is made from the suburb to the state table has a row displayed.

 No data is displayed for state values of “WA” or “QLD” because no join between the
common columns could be established.

Example 2
The below example is identical to Example 1 but has another join and another selection constraint.

SELECT cu.name, su.suburb,su.statecode,st.sales
FROM customer cu, suburb su, state st
WHERE cu.postcode = su.postcode AND
su.statecode = st.statecode AND
cu.name = ‘Smith’
cu.name su.suburb st.sales

Smith NSW 100009

This example actually used three tables so we need two join conditions.

5.5.2 Non-equijoin
A non-equijoin is the opposite to an equijoin. In order to make a join from one table to another the
value in the two joining columns must not be linked with the equality(=) operator.

SELECT tab1.col1, tab1.col2, tab2.col1 Select columns to display
FROM tab1, tab2 Choose tables to retrieve data from
WHERE tab1.col2 between tab2.col2 and tab2.col3 Establish the non-equijoin (<>)

Example 1
The below example joins the state and sales_cat tables based on the sales column. The sales
column in the state table needs to be between a certain range in the sales_cat table to establish a
join between the two tables.

SELECT st.statecode, sc.cat
FROM state st, sales_cat sc WHERE
st.sales BETWEEN sc.from_sales AND sc.to_sales
st.statecode sc.cat

NSW 100009

VIC 299009

WA 6700

Example 2
This example is the same login as Example 1 but uses different operators for the join condition.

SELECT st.statecode, sc.cat
FROM state st, sales_cat sc WHERE
st.sales >= sc.from_sales AND
st.sales <= sc.to_sales
st.statecode sc.cat

NSW Medium

VIC High

WA Low

Guidelines for using Non-equijoins

 When using the BETWEEN operator make sure there are no from/to ranges that overlap
each other. This is for data integrity purposes.

 When using the BETWEEN operator follow the below guidelines,
- The value should not be less that the lowest from value.
- The value should not be higher than the highest to value.

This is for data integrity purposes.

 When using the BETWEEN operator specify the range in the order of lowest then highest.

 Other operators such as >=, >, <, <= are available.

5.5.3 Outer Joins
Data is only returned from a join query if it meets the criteria of the join. An outer join is used to
return data that does not satisfy the join condition in the WHERE clause. An outer join is
established with the use of the plus (+) sign.

SELECT tab1.col1, tab2.col1, tab2.col2 Select columns to display
FROM tab1, tab2 Choose tables to retrieve data from
WHERE tab1.col1(+) = tab2.col1 Establish the outer join (+)

Example 1
The below example joins the suburb and state tables based on the statecode.

SELECT su.suburb,st.statecode
FROM suburb su, state st
WHERE su.statecode(+) = st.statecode
su.suburb su.statecode

Sutherland NSW

Begsville NSW

Nadenham

Grethem VIC

The (+) sign is placed on the state table because there is no corresponding QLD value in the state
table. This forces the left half of the join condition to be displayed without the right portion.

Example 2
The below example joins the suburb and state tables based on the statecode.

SELECT su.suburb,st.statecode
FROM suburb su, state st
WHERE su.statecode(+) = st.statecode(+)
su.suburb su.statecode

Sutherland NSW

Begsville NSW

Nadenham

Grethem VIC

 WA

The (+) sign is placed on both tables in order to display all columns which are missing the data
required for the link.

Guidelines for using outer joins

 The plus (+) sign is placed on the side of the join condition that is missing the data.

 The plus (+) sign can be placed on only one side of the join condition.

 The outer join cannot include the IN operator.

 Outer joins conditions cannot be linked to other conditions in the WHERE clause by the OR
operator.

5.5.4 Self Joins
Self joins are used to link one table to itself within the WHERE clause.

SELECT tab1.col1, tab2.col1 Select columns to display
FROM table tab1, table tab2 Choose the table to retrieve data from
WHERE tab1.col1 = tab2.col1 Establish the self join

Note that in the syntax provided above the table aliases tab1 and tab2 would refer to the same
table.

Example 1
The below example joins the sales_rep table to itself to obtain a list of employees and their
managers.

SELECT T1.code, t1.name, t2.name
FROM employees t1, employees t2
WHERE t1.manager = t2.code
t1.code t1.name t2.name

1000 Jeff Darren

1001 Martin Darren

2000 Darren Greg

5.5.5 Cross Joins
The cross join adheres to the 1999: SQL Syntax. It is the equivalent of performing a join that
produces a Cartesian product.

SELECT col1, col2 Select columns to display
FROM tab1 Choose the first table in the cross join
CROSS JOIN tab2 Choose the second table in the cross join

Example 1
The below example creates a cross join (Cartesian product) between the suburb and state tables.

SELECT name, statecode, state
FROM suburb
CROSS JOIN state
name statecode State

Sutherland NSW New South Wales
Begsville NSW New South Wales
Nadenham NSW New South Wales
Grethem NSW New South Wales

Sutherland VIC Victoria
Begsville VIC Victoria
Nadenham VIC Victoria
Grethem VIC Victoria

Sutherland WA Western Australia

Begsville WA Western Australia

Nadenham WA Western Australia

Grethem WA Western Australia

5.5.6 Natural Joins
The natural join adheres to the 1999: SQL Syntax. It is the equivalent of performing a normal
equijoin. No columns names need to be specified with the natural join, all column names that are
identical between the two tables are automatically joined.

SELECT col1, col2 Select columns to display
FROM tab1 Choose the first table in the cross join
CROSS JOIN tab2 Choose the second table in the cross join

Join Rules

 All column names that are identical between the join (columns that form the join) must be
of the same datatype or the query will result in an error.

 The USING clause can be used in the natural join under the following conditions,
- When the datatypes between two identical columns are different.
- To join the two tables based on only one column.

 If the USING clause is used then column names cannot be used with table aliases.

Example 1
The below example creates a natural join between the suburb and state tables.

SELECT name, statecode, state
FROM suburb
NATURAL JOIN state
name statecode State

Sutherland NSW New South Wales

Begsville NSW New South Wales

Nadenham QLD Queensland

Grethem VIC Victoria

Example 2
The below example creates a natural join between the suburb and state tables and includes
further constraints by using a WHERE clause.

SELECT name, statecode, state
FROM suburb
NATURAL JOIN state
WHERE statecode = “NSW”
name statecode State

Sutherland NSW New South Wales

Begsville NSW New South Wales

Example 3
This example creates a join on the customer and suburb tables based only on the postcode
columns by including the USING clause.

SELECT gender, postcode, population
FROM customer
JOIN suburb
USING postcode
gender statecode State

M NSW New South Wales

F NSW New South Wales

M QLD Queensland

F NSW New South Wales

M QLD Queensland

5.5.7 The ON Clause
The ON clause adheres to the 1999: SQL Syntax. It is used to join tables based on columns that
have different names. The ON clause is useful for joining tables to themselves (Self Join).

SELECT tab1.col1, tab2.col1 Select columns to display
FROM table tab1 JOIN table tab2 Choose the table to retrieve data from
ON (tab1.col1 = tab2.col1) Establish the self join

Join Rules

 If the ON clause is not used then the SQL expression will join the tables based on identical
column names between the tables. This is the equivalent of a natural join.

 The ON clause can be used in conjunction with the WHERE clause to add further
constrains.

 Further constrains can be included in the WHERE condition by the use of the AND clause.

Example 1
The below example creates a self join on the employees table.

SELECT t1.code, t1.name, t2.name
FROM employees t1, employees t2
ON (t1.manager = t2.code)
t1.code t1.name t2.name

1000 Jeff Darren

1001 Martin Darren

2000 Darren Greg

Example 2
The below example creates a natural join between the suburb and state tables and also includes
further data constraints by using the WHERE clause.

SELECT t1.name, t2.statecode, t2.state
FROM suburb t1, state t2
ON (t1.statecode = t2.statecode)
WHERE statecode = “NSW”

name Statecode State

Sutherland NSW New South Wales

Begsville NSW New South Wales

5.5.8 Three Way Joins
The SQL: 1999 compliant syntax permits the join of three tables using a three way join. This is
the equivalent of a three-way equijoin.

SELECT tab1.col1, tab2.col1, tab3.col1 Select columns to display
FROM table tab1 Choose the first table
JOIN table tab2 Choose the second table
ON (tab1.col1 = tab2.col1) Join the first table to the second table
JOIN table tab3 Choose the third table
ON (tab2.col1 = tab3.col1) Join the second table to the third table

Three Way Join Rules

 The sequence of the joins must be performed from left to right as per below,
Correct

Incorrect

 The first join condition only has scope to which tables have been declared so far in the
SQL expression. This means the join condition only has scope of the first two tables.

 The second join condition has scope to all tables that have declared so far. This means it
has scope of all tables.

Example 1
The below example creates a three-way join on the customer, suburb and state tables.

SELECT cu.name, su.statecode,st.sales
FROM customer cu
JOIN suburb su
ON (cu.postcode = su.postcode)
JOIN state st
ON (su.statecode = st.statecode)
cu.name su.statecode st.sales

Smith N 100009

Jones N 100009

Thirley N 100009

Ravenwood N 100009

The same example in provided in section 5.5.1 Equijoin under Example 2 as a three way
equijoin.

TABLE1 TABLE2 TABLE3

TABLE3 TABLE2 TABLE1

5.5.9 Left Outer Join
The left outer join adheres to the 1999: SQL Syntax. It is the equivalent of the outer join with the
plus (+) sign on the left hand side of the equal sign.

SELECT tab1.col1, tab2.col1, tab2.col2 Select columns to display
FROM table tab1 Choose the left table
LEFT OUTER JOIN table2 Choose the right table
ON (tab1.col1 = tab2.col1) Establish the left outer join condition

Example 1
The below example joins the customer and suburb tables based on the postcode. All rows from
the customer table are returned even if there is no match with the suburb table.

SELECT cu.name, su.postcode
FROM customer cu
LEFT OUTER JOIN suburb su
ON (cu.postcode = su.postcode)
cu.name su.postcode

Smith 2232

Jones 2232

Simons 2199

Thirley 2245

Ravenwood 2245

Andrews

The above query is the equivalent of placing the plus (+) sign next to the cu.postcode column.

5.5.10 Right Outer Join
The right outer join adheres to the 1999: SQL Syntax. It is the equivalent of the outer join with the
plus (+) sign on the right hand side of the equal sign.

SELECT tab1.col1, tab2.col1, tab2.col2 Select columns to display
FROM table tab1 Choose the left table
RIGHT OUTER JOIN table2 Choose the right table
ON (tab1.col1 = tab2.col1) Establish the right outer join condition

Example 1
The below example joins the customer and suburb tables based on the postcode. All rows from
the suburb table are returned even if there is no match with the customer table.

SELECT cu.name, su.postcode
FROM customer cu
RIGHT OUTER JOIN suburb su
ON (cu.postcode = su.postcode)
cu.name su.postcode

Smith 2232

Jones 2232

Simons 2199

Thirley 2245

Ravenwood 2245

 3000

The above query is the equivalent of placing the plus (+) sign next to the su.postcode column.

5.5.11 Full Outer Join
The full outer join adheres to the 1999: SQL Syntax. It is the equivalent of the outer join with the
plus (+) sign on both signs of the equal sign.

SELECT tab1.col1, tab2.col1, tab2.col2 Select columns to display
FROM table tab1 Choose the left table
FULL OUTER JOIN table2 Choose the right table
ON (tab1.col1 = tab2.col1) Establish the full outer join condition

Example 1
The below example joins the customer and suburb tables based on the postcode. All rows from
both tables are retuned even if there is no match across the tables.

SELECT cu.name, su.postcode
FROM customer cu
RIGHT OUTER JOIN suburb su
ON (cu.postcode = su.postcode)
cu.name su.postcode

Smith 2232

Jones 2232

Simons 2199

Thirley 2245

Ravenwood 2245

Andrews

 3000

The above query is the equivalent of placing the plus (+) sign next to both the cu.postcode and
su.postcode columns.

5.6 Summary
 Oracle allows you to combine the data from multiple tables using the following join types,

Join Classification

SQL 1999: Compliant Syntax Oracle Syntax

Cross Join Cartesian Product

Natural Join Equijoin

Join USING Non-Equijoin

Left Outer Join (+)Outer Join

Right Outer Join Outer Join(+)

Full Outer Join (+)Outer Join(+)

Join ON Self Join

 Cartesian products are created when an invalid join condition is established or if the join
condition is non existent.

 Equijoins are used to join tables based on equal values between common columns.

 Non-Equijoins are used to join tables based on non-equal values between common
columns.

 Outer Joins are used to display rows from a table that do not meet the join condition.

 Self Joins are used to join a table to itself.

5.7 Exercises

A. Build a join SQL expression as per the below requirements,

Join Type Table names Table Alias Columns to Join Columns to Display
Equijoin customer, suburb cu, su postcode Cu.name, su.postcode

B. Build a join SQL expression as per the below requirements,

Join Type Table names Table Alias Columns to Join Columns to Display
Equijoin sustomer, suburb cu, su postcode cu.name, su.postcode

Equijoin Suburb, State Su, st statecode st.statecode

C. Build a join SQL expression as per the below requirements,

Join Type Table names Table Alias Columns to Join Columns to Display
Self join employees emp code, manager_ code code, name, manager_code

D. Build a join SQL expression as per the below requirements,

Join Type Table names Table Alias Columns to Join Columns to Display
Outer Join customer, suburb cu, su (+)postcode cu.name, cu.age, su.postcode

Equijoin suburb, state su,st statecode st.state

E. Build a join SQL expression as per the below requirements,

Join Type Table names Table Alias Columns to Join Columns to Display
Outer Join customer, suburb cu, su (+)postcode cu.name, cu.age, su.postcode

Equijoin suburb, state su,st statecode state

Non-equijoin state, sales_cat st,sl st.sales (sl.from_sale -
sl.to_sale)

sl.cat

F. Build a join SQL expression as per the below requirements,

Join Type Table names Table Alias Columns to Join Columns to Display
Left Outer Join customer, suburb cu, su (+)postcode cu.name, cu.age, su.postcode

6. Group Functions
6.1 Objectives
After this chapter you should be able to perform the following,

 Understand the use of group functions

 Understand and use all the common available group functions.
 Understand and user the GROUP BY clause.

 Understand and user the HAVING clause.

6.2 Test Data
The below table information is used as test data for the examples shown throughout this chapter.

TABLE : customer

name postcode gender age

Smith 2232 M 35

Jones 2232 F 21

Simons 2199 M 50

Thirley 2245 F 56

Ravenwood 2245 M 28

Andrews 2345 M 43

TABLE : employees

code name position manager_code

1000 Jeff Sales Rep 2000

1001 Martin Sales Rep 2000

2000 Darren Sales Manager 3000

3000 Greg General Manger

6.3 Using Group Functions
Oracle provides the functionality to categorize the data retuned from SQL expressions into
particular groups. Data can be grouped multiple ways as per below,

 Single table placed into a group.

 Subset of a single table placed into a group.

 Multiple tables placed into a group.

 Subset of multiple tables placed into a group.

Data is grouped on a specific selection criteria which is defined in an SQL expression. Once data
is grouped into the necessary requirements, certain group functions are available to perform
operations/calculations on that group.

Example
The below example is a diagram of how a single table can create a group of users and then find
an average value of that group.

TABLE : customer Group

name age name age

Smith 35 Smith 35

Jones 21 Simons 50

Simons 50

Thirley 56

Ravenwood 28 Group Result

Andrews 43 Average Age 42.5

6.4 Group Function Syntax and Rules
When using group functions there is various rules and syntax regulations to follow as per below,

Syntax Example 1
SELECT group function(column1)
FROM customer, suburb
WHERE condition
GROUP BY column1

The GROUP BY clause is required when categorizing data into groups.
WHERE clause condition .
Table(s) to retrieve data from.
SELECT clause identifies the columns and group functions to use.

Group Rules

 The keyword DISTINCT can be used to exclude duplicate records from groups. By default
ALL duplicate records will be included in the group.

 Null values are ignored when passed into group functions.

 Sorting is performed automatically when the GROUP BY clause is used. The default sort
order is ascending. Use the syntax ORDER BY DESC to override the default.

 Only CHAR, VARCHAR2, NUMBER and DATE data types can be used when passing an
expression to a group function.

6.5 Common Group Functions
Oracle provides various group functions that are used within SQL expressions. Below is a list of
some of the most commonly used group functions.

Group Functions

Function Description Argument Data Type

AVG Provides the average value of a group of values Numeric

SUM Provide the sum of a group of values Numeric

MIN Provides the smallest value in a group of values Any

MAX Provides the largest value in a group of values Any

COUNT Provides the number of rows in a group of values Any

6.5.1 AVG
The AVG function returns the average value of a group of values.

AVG(column1/expression1)

Value to calculate average on.
Function call.

Example 1
The below example calculates the average age for all records in the customers table. Records
are grouped based on the postcode.

SELECT postcode, AVG(age)
FROM customers
GROUP BY postcode
postcode AVG(age)

2199 50

2232 28

2245 42

2345 43

6.5.2 SUM
The SUM function returns the addition of a group of values.

SUM(column1/expression1)

Value to perform addition on.
Function call.

Example 1
The below example calculates adds the age columns together for all records in the customers
table. Records are grouped based on the postcode.

SELECT postcode, AVG(age)
FROM customers
GROUP BY postcode
postcode AVG(age)

2199 50

2232 50

2245 84

2345 43

6.5.3 MIN
The MIN function returns the lowest value in a group of values.

MIN(column1/expression1)

Return lowest value in column1/expression1.
Function call.

Example 1
The below example returns the lowest age for all records in the customers table. Records are
grouped based on the postcode.

SELECT postcode, MIN(age)
FROM customers
GROUP BY postcode
Postcode AVG(age)

2199 50

2232 21

2245 28

2345 43

6.5.4 MAX
The MAX function returns the highest value in a group of values.

MAX(column1/expression1)

Return highest value in column1/expression1.
Function call.

Example 1
The below example returns the highest age for all records in the customers table. Records are
grouped based on the postcode.

SELECT postcode, MAX(age)
FROM customers
GROUP BY postcode
postcode AVG(age)

2199 50

2232 35

2245 56

2345 43

6.5.5 COUNT
The COUNT group function will return the number of rows in a table.

COUNT(DISTINCT */column1)

Return number of rows in table.
Function call.

Example 1
The below example returns the number of rows in the employees table.

SELECT COUNT(*)
FROM employees
COUNT(*)

4

Example 2
The below example returns the number of rows in the employees table which meet the SELECT
criteria.

SELECT COUNT(*)
FROM employees
WHERE position = ‘Sales Rep’
COUNT(*)

2

Example 3
The below example returns the number of rows in the employees table based on the
manager_code column.

SELECT COUNT(manager_code)
FROM employees
COUNT(*)

3

Only three rows are counted because any row that has a null in the manager_code column is
ignored.

Example4
The below example returns the number of rows in the employees table based on the
manager_code column.

SELECT COUNT(DISTINCT manager_code)
FROM employees
COUNT(*)

2

Only two rows are counted due to the following,

 Any row that has a null in the manager_code column is ignored.

 The DISTINCT keyword ignores duplicates in the manager_code column.

6.6 NVL and Group Functions
When performing group functions all null values are ignored. For example, if an attempt was made
to calculate the average value on a particular column then any row that had a null in that column
would be excluded from the average calculation. In order to include null values in a group function
we simply nest the NVL function within the group function as per below,

AVG(NVL(manager_code,0))

Replace nulls with values.
Group function call.

Example 1
The below example calculates the average on the manager_code columns and excludes nulls
from the calculation.

SELECT AVG(manager_code)
FROM employees
COUNT(*)

2333.33

Example 2
However, if we nest the NVL function to replace nulls with zeros we receive a different result.

SELECT AVG(NVL(manager_code,0))
FROM employees
COUNT(*)

1750

Group Nesting Rules

 The above examples make reference to nesting group functions. Oracle will only accept a
limit of two levels for group functions.

6.7 The GROUP BY Clause
Previously in this chapter we introduced the use of the GROUP BY clause. The GROUP BY
clause will group table information together based on a value within a particular column.

SELECT column1, group function(column2)
FROM table1
GROUP BY column1

The GROUP BY clause specifies which columns the data should be grouped into.
Table(s) to retrieve data from.
SELECT clause identifies the columns to display and what group function to use.

The syntax shown above indicates that the data will be grouped into the distinct values found in
column1 and the group function(column2) applied to each of those groups.

Example 1
The below example groups the table rows based on postcode and calculates the average age for
that group of customers.

SELECT postcode, AVG(age)
FROM customer
GROUP BY postcode
postcode AVG(age)

2199 50

2232 28

2245 84

2345 43

Example 2
The below example groups the table rows based on postcode and calculates the average age for
that group of customers. Note that this example does not display the columns used in the GROUP
BY clause.

SELECT AVG(age)
FROM customer
GROUP BY postcode
AVG(age)

50

50

84

43

Example 3
The below example groups the table rows based on postcode and gender. Once the groups have
been established the average age calculation is performed for each group.

SELECT postcode, gender, AVG(age)
FROM customer
GROUP BY postcode, gender

postcode gender AVG(age)

2232 M 35

2232 F 21

2199 M 50

2245 F 56

2245 M 28

2345 M 43

Because each group only contains a single row the average calculation is ineffective.

GROUP BY clause rules

 When the GROUP BY clause is used all columns not using a group function must be
specified in the GROUP BY clause. If the non-function column is not specified then the
error “not a single-group group function” will be displayed.

 Rows can be excluded from the group by the use of the WHERE clause.

 The GROUP BY clause cannot contain column aliases.

 The GROUP BY clause sort rows in ascending order, this can be overwritten with the
ORDER BY clause.

 Any column specified in the GROUP BY clause are not required to be included in the
SELECT clause.

 When the GROUP BY clause is used columns are grouped in the order of left to right.

 Group functions cannot have constraints in the WHERE clause. Group functions must be
placed in the HAVING clause. The having clause will be discussed further in this chapter.

6.8 The HAVING Clause
Sometimes certain groups of data needs to be excluded from the SQL query. Unfortunately SQL
syntax does not permit the exclusion of groups of data using the WHERE clause. For the purpose
of data exclusion we need to use the HAVING clause instead of the WHERE clause.

SELECT group function(column1)
FROM customer, suburb
HAVING condition
GROUP BY column1

The GROUP BY clause is required when categorizing data into groups.
The HAVING clause is required when restricting group data .
Table(s) to retrieve data from.
SELECT clause identifies the columns and group functions to use.

Example 1
The below example groups the table rows based on postcode and gender. Once the groups have
been established the average age calculation is performed for each group. Provided that the group
condition AVG(age) is less than 40 the group data will be displayed.

SELECT postcode, gender, AVG(age)
FROM customer
GROUP BY postcode, gender
HAVING AVG(age) < 40

postcode gender AVG(age)

2232 M 35

2232 F 21

2245 M 28

Example 2
This example illustrates how to mix group functions between the SELECT and HAVING clause. It
is important to remember in the below example the MAX function is used against the group values
and not the result of the AVG(age) group function.

SELECT postcode, AVG(age)
FROM customer
GROUP BY postcode, gender
HAVING MAX(age) > 30

postcode AVG(age)

2199 50

2232 28

2245 42

2345 43

6.9 Summary
 Group functions are used for grouping data together in order to perform a particular

operation on that group.

 Oracle provides various group functions such as AVG, SUM, MIN, MAX and COUNT.

 By default null values are excluded from group functions. The NVL function is used to

replace nulls with values within group data.

 The GROUP BY clause will group table information together based on a value within a

particular column.

 The HAVING clause is used to place constantans on the data being selected.

6.10 Exercises
 Calculate the average age of all customers.

 Display the following information from the customers table on one row.

- Minimum customer age

- Maximum customer age

- Average customer age

- Sum of all customer ages

 Write an SQL query to determine the number of rows in the employees table based on the

distinct values in the manager_code column (Do not include nulls in the evaluation).

 Write an SQL query to determine the number of rows in the employees table based on the

distinct values in the manager_code column (Include nulls in the evaluation by replacing

them with the value 9999).

 Display the following information from the customers table based on the following,

- Group customer into gender

- Only customers who have are older

7. Subqueries
7.1 Objectives
After this chapter you should be able to perform the following,

 Understand the general use and purpose of subqueries.

 Understand and write all type of subqueries.

7.2 Test Data
The below table information is used as test data for the examples shown throughout this chapter.

TABLE : customer

name postcode gender age

Smith 2232 M 35

Jones 2232 F 21

Simons 2199 M 50

Thirley 2245 F 56

Ravenwood 2245 M 28

Andrews 2345 M 43

TABLE : employees

code name position manager_code

1000 Jeff Sales Rep 2000

1001 Martin Sales Rep 2000

2000 Darren Sales Manager 3000

3000 Greg General Manger

7.3 Purpose of a Subquery
A subquery is a SELECT statement which is embedded in another SELECT statement. The
subquery can appear in the SELECT, WHERE or FROM clause. Subqueries are used to identify
rows in a table which match an unknown condition. For example, suppose we look at the below
customer table and need to identify which customers are older than Smith.

TABLE : customer

name postcode gender age

Smith 2232 M 35

Jones 2232 F 21 <

Simons 2199 M 50 >

Thirley 2245 F 56 >

Ravenwood 2245 M 28 <

Andrews 2345 M 43 >

In order to find all customers who are older than Smith we need to perform two queries,

 Query1, Identify the age of customer Smith

 Query2, Identify all customers who are older than the result of Query1.

These two queries are actually written as one SQL expression. Query1 will actually be a subquery
of Query2 as per the below Syntax.

Example 1
The below subquery display all customers who are older than Smith.

SELECT name, age
FROM customers where
age >
 (SELECT age
 FROM customers
 WHERE name = ‘Smith’)

name age

Simons 50

Thirley 56

Andrews 43

In the above example the subquery returns a value of 35. This means that the main query will only
display customers who have an age greater than 35.

7.4 Subquery Syntax and Rules
When using subquery functions there are various rules and syntax regulations to follow as per
below,

Syntax Example 1
SELECT column1, column2
FROM table1
WHERE sub_query_link1 >
(SELECT sub_query_link2
FROM table2
WHERE sub_query_condition1)

Determine the subquery value to pass to the main query.
FROM clause identifies the table to use in the subquery.
Subquery SELECT clause to determine the column to use in the subquery.
WHERE clause comparison condition to join main query and subuery.
FROM clause identifies the table to use in the main query .
Main query SELECT clause identifies the columns to display.

Subquery Rules

 The Subquery can be placed in the FROM, WHERE or HAVING clause.

 The inner query (subquery) executes only once.

 The inner query (subquery) executes before the outer query (main query).

 The result of the inner query is used by the outer query.

 The inner and outer query can retrieve results from different tables.

 Subqueries must be enclosed in parenthesis.

 Subqueries must be placed on the right hand side of the comparison condition.

 The ORDER BY clause in a subquerie is not required unless Top-N analysis is being
performed.

 Single-row subqueries should only return one row when single-row comparison conditions
are used. If more than one row is returned Oracle will return an error message.

 When a subquery returns null the main query will not display anything.

7.5 Subquery Types
The link between the main query and the subquery is controlled by the comparison operator. The
comparison operator determines if the subquery is a single-row subquery or a multiple-row
subquery.

7.5.1 Single Row Subqueries
Single-row subqueries which use single-row operators(<,>,<=,>=,=,<>) return only one row from
the inner subquery.

SELECT column1, column2 Columns to display are defined in the main query
FROM table1 Tables to lookup in the main query
WHERE sub_query_link1 > Comparison condition uses single-row operator
(SELECT sub_query_link2 Subquery columns are not displayes
FROM table2 Tables to lookup in the subquery
WHERE sub_query_condition1) The WHERE condition should only return one row

Example 1
The below subquery display all customers who are older than Ravenwood.

SELECT name, age
FROM customers
WHERE age >
 (SELECT age
 FROM customers
 WHERE name = ‘Ravenwood’)

name age

Smith 35

Simons 50

Thirley 56

Andrews 43

In the above example the subquery returns a value of 28. This means that the main query will only
display customers who have an age greater than 28.

Example 2
The below subquery display all customers who are older than Ravenwood and younger than
Andrews. Notice that the main query contains two subqueries.

SELECT name, age
FROM customers
WHERE age >
 (SELECT age
 FROM customers
 WHERE name = ‘Ravenwood’)
AND age <
 (SELECT age
 FROM customers
 WHERE name = ‘Andrews’)

Name age

Smith 35

In the above example the two inner subqueries return the lower and upper age limits used in the
main query. The lower age limit from Smith and the upper age limit from Andrews.

7.5.1.1 Single Row Subqueries and Group Functions
Usually inner queries (subqueries) return a single row based on column(s) specified in their
SELECT clause and a comparison operation that returns a single row. Another method of
returning a single row is to use group functions in the inner SELECT clause.

SELECT column1, column2 Columns to display are defined in the main query
FROM table1 Tables to lookup in the main query
WHERE sub_query_link1 > Comparison condition uses single-row operator
(SELECT group_function(column1) Subquery column with group function
FROM table2) Tables to lookup in the subquery

Example 1
The below subquery displays all customers who are older than the average age.

SELECT name, age
FROM customers
WHERE age >
 (SELECT AVG(age)
 FROM customers)

name age

Simons 50

Thirley 56

Andrews 43

In the above example the subquery returns a value of 38. This means that the main query will only
display customers who have an age greater than 38.

7.5.2 Multiple Row Subqueries
Multiple-row subqueries which use multiple-row operators(IN, ANY, All) return more than one row
from the inner subquery.

The multiple-row operators returns TRUE under the following conditions,

 IN, If the value matches any element retuned from the subquery.

 < ANY, If the value is less than ANY of the elements returned from the subquery.

 > ANY, If the value is more than ANY of the elements returned from the subquery.

 < ALL, If the value is less than ALL of the elements returned from the subquery.

 > ALL, If the value is more than ALL of the elements returned from the subquery.

SELECT column1, column2 Columns to display are defined in the main query
FROM table1 Tables to lookup in the main query
WHERE sub_query_link1 IN Comparison condition uses multiple-row operator
(SELECT sub_query_link2 Subquery columns are not displayes
FROM table2 Tables to lookup in the subquery
WHERE sub_query_condition1) The WHERE condition should only return one row

Example 1
The below subquery displays the customers who are the same age as minimum age for each
postcode.

SELECT name, age, postcode
FROM customers
WHERE age IN
 (SELECT MIN(age)
 FROM customers
 GROUP BY postcode)

name age postcode

Jones 21 2232

Simons 50 2199

Ravenwood 28 2245

Andrews 43 2345

In the above example the subquery returns the values of 21, 50, 28 and 43. This means that the
main query will only display customers who have an age equal to one of these elements.

Example 2
The below subquery displays the customers who are younger than anyone from postcodes 2240
and above.

SELECT name, age, postcode
FROM customers
WHERE age < ANY
 (SELECT age
 FROM customers
 WHERE postcode > 2240)

name age postcode

Smith 35 2232

Simons 50 2199

Thirley 56 2245

Andrews 43 2345

In the above example the subquery returns the values of 56, 28 and 43. This means that the main
query will only display customers who have an age less than 56 or 28 or 43.
Note :
The ANY operator performs the same operation as its synonym the SOME operator.

Example 3
The below subquery displays the customers who are younger than the youngest customer from
postcodes 2240 and above.

SELECT name, age, postcode
FROM customers
WHERE age < ALL
 (SELECT age
 FROM customers
 WHERE postcode > 2240)

name age postcode

Jones 21 2232

In the above example the subquery returns the values of 56, 28 and 43. This means that the main
query will only display customers who have an age less than 56 and 28 and 43.

7.6 Subqueries and the HAVING Clause
Subqueries can also be used in the HAVING clause as per below.

SELECT column1, column2 Columns to display are defined in the main query
FROM table1 Tables to lookup in the main query
HAVING sub_query_link1 > Comparison condition uses single row operator
(SELECT column1 Subquery column with group function
FROM table2 Tables to lookup in the subquery
WHERE sub_query_condition1) Subquery constraint

Example 1
The below subquery displays all customers who are older than the average age of all customers.

SELECT name, age
FROM customers
HAVING age >
 (SELECT AVG(age)
 FROM customers)

Name age
Simons 50

Thirley 56

Andrews 43

In the above example the subquery returns a value of 38. This means that the main query will only
display customers who have an age greater than 38.

7.7 Null Values in a Subquery
It is important to remember that subqueries can return null values. For this reason certain
precautions must be taken when it is likely that a subquery may return a null value.

Example 1
The below example attempts to find all employees who do not manage any employees.

SELECT code, name
FROM employees
WHERE code NOT IN
 (SELECT manager_code
 FROM employees)

name age
No rows selected

The values of 2000, 3000 and null were returned from the subquery. This means that the main
query is looking up every employee to see if they are equal to 2000, 3000 or null. Since no
employee code is null there will be no results generated from this query.

To fix this query we can modify the SQL expression as per below,

SELECT code, name
FROM employees
WHERE code NOT IN
 (SELECT manager_code
 FROM employees
 WHERE manager_code IS NOT NULL)

code name
1000 Jeff

1001 Martin

7.8 Summary
 Subqueries have the below characteristics,

- Appear as a SELECT statement which is embedded in another SELECT statement.
- Can be included in the SELECT, WHERE or FROM clause.

- Used to identify rows in a table which match an unknown condition.

 Single-row subqueries which use single-row operators(<,>,<=,>=,=,<>) return only one row
from the inner subquery.

 Group functions can be used in inner querie to return single values for single-row
subqueries.

 Multiple-row subqueries which use multiple-row operators(IN, ANY, All) return more than
one row from the inner subquery.

 Precaution should be taken with Null values being returned from subqueries by the use of
the IS NOT NULL phrase.

7.9 Exercises
 Write a single-row subquery to display all customer who are older than Ravenwood.

 Write a single-row subquery to display all customer who are older than Ravenwood and
younger than Simons.

 Write a multiple-row subquery to display all users that are older than any customer whos
name starts with am “S”.

 Write a multiple-row subquery to display all users that are older than all customer whos
name starts with am “S”.

 Write a multiple-row subquery to display all customers who are within the age bracket of
Ravenwood and Simons.

8. Data Manipulation
8.1 Objectives
After this chapter you should be able to perform the following,

 Understand and use the below DML statements,
- INSERT
- UPDATE
- DELETE

 Control the state of SQL transactions and their data.

8.2 Test Data
The below table information is used as test data for the examples shown throughout this chapter.

TABLE : employees

name postcode Gender age

Smith 2232 M 35

Jones 2232 F 21

Simons 2199 M 50

Thirley 2245 F 56

Ravenwood 2245 M 28

Andrews 2345 M 43

TABLE : vendorpo

name todaysdate purchdate user purchid

TABLE : vendorpohist

name todaysdate purchdate user purchid

Grey 10-SEP-2002 10-SEP-2003 PAULS A01

Rooster 10-NOV-2003 10-NOV-2003 KAYS A02

8.3 Data Manipulation Language (DML)
Data manipulation language (DML) operations are performed when data in the database is
inserted, deleted or updated. A single or series of DML operations belongs to what is known as a
transaction. If a transaction contains a series of DML operations then all of those operations must
be successful in order for the transaction to complete successfully. If any one of those DML
operations within the transaction fails then all the other DML operations that make up that
transaction are rolled back.

Failed Transaction

Successful Transaction

DML 1
(Success)

DML 2
(Failed)

Data State Y Trans
Success?

Y

N

Data State X

Transaction

DML 1
(Success)

DML 2
(Success)

Data State Y Trans
Success?

Y

N

Data State X

Transaction

8.4 INSERT Statement
The INSERT statement will insert rows into a table. The addition of rows into a table can be
performed using the following methods,

 Inserting literal strings using the VALUES clause.

 Requesting user input during the INSERT operation.

 Copying rows from another table during the INSERT operation.

8.4.1 INSERT VALUES Clause
The INSERT VALUES clause will insert rows into a table with information provided in the SQL
statement as per the below syntax,

INSERT INTO table1 Name of table to insert rows into
VALUES (value1, value2, …) Column values of new row

INSERT VALUSE Clause Rules

 The data entered in the VALUES clause needs to be specified in the order of the table
columns.

 If the order of the data in the VALUES clause is different from the order of the columns in
the table then the column order needs to be specified.

 If column names are not used to specify the order of the values then all fields must be
accounted for in the correct order within the VALUES clause.

 Character and date values must be enclosed with single quotes.

Example 1

The below INSERT statement inserts a single row into the customer table.

INSERT INTO employees
VALUES (‘Peters’,’2345’,’M’,‘32’)

1 row created

Example 2
The below INSERT statement inserts a single row into the customer table.

INSERT INTO employees(age,postcode,name,gender)
VALUES (‘70’,’2999’, ‘Adams’,’F’)

1 row created

The above example inserts the column values in the order specified (left to right).

Result

TABLE : customer

name postcode Gender age

Smith 2232 M 35

Jones 2232 F 21

Simons 2199 M 50

Thirley 2245 F 56

Ravenwood 2245 M 28

Andrews 2345 M 43

Adams 2999 F 70

Peters 2345 M 32

8.4.2 INSERT and Nulls
When inserting data into columns a particular value must be provided which matches the column
data type. If the data provided is not of the correct data type then the Oracle server will attempt an
implicit data type conversion on the data before inserting it. However, if no data is specified then
null values will be inserted instead.

The below INSERT command provides an example of how null values are implicitly or explicitly
used before the INSERT operation takes place.

Example 1
This example uses null values implicitly for certain columns.

INSERT INTO employees (name,postcode)
VALUES (‘Knowles’,’2000’)
1 row created

Example 2
This example uses null values explicitly for certain columns.

INSERT INTO employees
VALUES (‘Grant’,’2000’,null, null)
1 row created

Result

TABLE : employees

name postcode Gender age

Smith 2232 M 35

Jones 2232 F 21

Simons 2199 M 50

Thirley 2245 F 56

Ravenwood 2245 M 28

Andrews 2345 M 43

Adams 2999 F 70

Peters 2345 M 32

Knowles 2000

Grant 2000

8.4.3 INSERT Rules
Certain rules need to be followed when inserting literal values as per below,

 If a column has a constraint of NOT NULL then a value must be specified during an
INSERT operation.

 If a column has a constraint of UNIQUE then the value being inserted into that column
must not already exist in the table.

 If a column has a constraint of FOREIGN KEY then the value being inserted must exist in
the key relationship.

 If a column has a constraint of CHECK then the value being inserted met not violate the
CHECK constraint.

 INSERT values must be of the required data type.

 Use empty quotes (‘’) or zero (0) in the VALUES clause to avoid inserting nulls.

 Make sure values are not to wide to fit in the target column.

8.4.4 INSERT and Functions
Functions can be used in the INSERT operation to provide certain types of information. The call to
the function replaces a literal value which is located within the VALUES clause.

INSERT INTO table1 Name of table to insert rows into
VALUES (value1, function_call, …) Column values of new row (Including function call)

Example 1

The below INSERT statement inserts a single row into the customer table.

INSERT INTO employees
VALUES (‘Thompson’,’2898’,’M’,STR(ROUND(32.7)))

1 row created

TABLE : employees

name postcode Gender age

Smith 2232 M 35

Jones 2232 F 21

Simons 2199 M 50

Thirley 2245 F 56

Ravenwood 2245 M 28

Andrews 2345 M 43

Adams 2999 F 70

Peters 2345 M 32

Knowles 2000

Grant 2000

Thompson 2898 M 33

The function call in the above example is actually a nested function which rounds of a literal value
and then performs an explicit string conversion.

Example 2

The below INSERT statement inserts a single row into the vendorpo table.

INSERT INTO vendorpo
VALUES (‘ABC Bearings’,SYSDATE,TO_DATE(11-01-04,’DD/MM/YY’),USER,’A12’)

1 row created

TABLE : vendorpo

name todaysdate purchdate user purchid

ABC Bearings 11-FEB-2004 11-JAN-2004 JOHNS A12

This example uses three system functions as per below,

 SYSDATE, Returns the current system date

 USER, Returns the current user logged in

 TO_DATE, Performs an explicit conversion on a string data-type to a date data-type

8.4.5 INSERT and Substitution Values
INSERT statements can be written so that when they are executed the user is prompted for input.
The user input provided will then be assigned to variables declared in the INSERT statement.
Variables are identified in the INSERT statement by the use of the & operator as per below,

INSERT INTO table1 Name of table to insert rows into
VALUES (value1, ‘&variable1’) Values and variables to use during the insert

Example 1
The below INSERT statement inserts a single row into the vendorpo table but first prompts the
user for the values that are to be inserted.

INSERT INTO vendorpo
VALUES (‘&name’,SYSDATE,TO_DATE(11-01-04,’DD/MM/YY’),USER,’A13’)

Name : London
1 row created

TABLE : vendorpo

name todaysdate purchdate user purchid

London 11-FEB-2004 11-JAN-2004 JOHNS A13

Substitution Value Rules

 The & operator is used to identify and mark the position of a substitution value in the SQL
statement.

 If a substitution value is located within single quotes (‘’) then the INSERT operation expects
a string or date data type.

 If a substitution value is not located within single quotes (‘’) then the INSERT operation
expects a number data type.

The role of substation values has its main impact when combined with the use of scripting. If the
above INSERT statement was saved as a script then it could simply be called numerous times and
prompt the user for different values during every execution cycle.

To execute a script from the SQL command line simply type the script filename preceded by the @
symbol.

Example 2
The below example runs a script from the SQL command line,
SQL>@C:\TEMP\Script.sql

8.4.6 Inserting Rows From Another Table
The INSERT command can also be used to insert rows that are located in another table. This is
achieved by embedding a SELECT statement within the INSERT statement.

INSERT INTO table1(column1, column2, column3) Choose the target table
SELECT column4, column5, column6 Choose the columns to insert
FROM table2 Choose the source table
WHERE condition1 Restrict rows to copy

Example 1
The below INSERT statement copies rows from vendorpohist into vendorpo.

INSERT INTO vendorpo
SELECT * FROM vendorpohist

2 rows created

TABLE : vendorpo

Name Todaysdate purchdate user purchid

London 11-FEB-2004 11-JAN-2004 JOHNS A13

Grey 10-SEP-2002 10-SEP-2003 PAULS A01

Rooster 10-NOV-2003 10-NOV-2003 KAYS A02

Note :

 This query could also have been written by specifying all the required table columns as per
below.

 If a column is omitted then a NULL is put in its place.

INSERT INTO vendorpo(name,todaysdate,purchdate,user,purchid)
SELECT name,todaysdate,purchdate,user,purchid FROM vendrpohist

Copying Rules and Guidelines

 The VALUES clause is not used when copying from other tables.

 The number of columns specified in the INSERT clause must total the number of columns
used in the corresponding SELECT clause.

 The data types of columns specified in the INSERT clause must match the columns used
in the corresponding SELECT clause.

 Literal values can replace columns names in the SELECT clause.

8.4.7 INSERT with Subqueries
When an INSERT statement is executed the results are displayed as the number of rows inserted.
To query the data directly after it has been inserted include a subquery in the INSERT operation
as per below.

INSERT INTO INSERT statement
(SELECT column1, column2, column3 Choose columns to query
FROM table2 Choose table to query
WHERE condition1) Restrict rows to query
VALUES (value1, value2, value3) Declare values to insert

Example 1
The below INSERT statement will insert the row and then display all the rows as per the subquery.

INSERT INTO
(SELECT name, todaysdate, purchdate, user, purchid
FROM vendorpohist)
VALUES (‘Toms’,’10-MAR-2001’,’10-MAR-2001’,’JOHNS’,’A04’)

name todaysdate purchdate user purchid

London 11-FEB-2004 11-JAN-2004 JOHNS A13

Grey 10-SEP-2002 10-SEP-2003 PAULS A01

Rooster 10-NOV-2003 10-NOV-2003 KAYS A02

Toms 10-MAR-2001 10-MAR-2001 JOHNS A04

8.5 UPDATE Statement
The UPDATE statement will update existing rows in a table. Much like the INSERT statement the
UPDATE statement can be performed using the following methods,

 Updating columns using literal values.

 Copying rows from another table during the UPDATE operation.

 Requesting user input during the UPDATE operation.

8.5.1 UPDATE with Literal Values
The UPDATE statement in its simplest form as per below will amend rows with literal values which
are supplied within the UPDATE statement.

UPDATE table1 Choose the table to update
SET col1 = value1, col2= value2 Choose the field(s) to update
WHERE condition1 Restrict rows to copy

If the WHERE clause is omitted from the UPDATE then all rows in the table are updated according
to the SET clause.

Example 1
The below UPDATE statement amends rows in the vendorpo table.

UPDATE vendorpo
SET purchdate = ’01-JAN-2004’

3 rows updated

TABLE : vendorpo

name todaysdate purchdate user purchid

London 11-FEB-2004 01-JAN-2004 JOHNS A13

Grey 10-SEP-2002 01-JAN-2004 PAULS A01

Rooster 10-NOV-2003 01-JAN-2004 KAYS A02

Toms 10-MAR-2001 01-JAN-2004 JOHNS A04

Because the WHERE clause is omitted all rows in the table are updated.

Example 2
The below UPDATE statement amends rows in the vendorpo table.

UPDATE vendorpo
SET purchdate = ’01-JAN-2003’, puchdate = ’01-JAN-2003’
WHERE name = ‘Grey’

1 row updated

TABLE : vendorpo

Name todaysdate purchdate user purchid

London 11-FEB-2004 01-JAN-2004 JOHNS A13

Grey 01-JAN-2003 01-JAN-2003 PAULS A01

Rooster 10-NOV-2003 01-JAN-2004 KAYS A02

Toms 10-MAR-2001 01-JAN-2004 JOHNS A04

Because the WHERE clause is included only specific rows in the table are updated.

8.5.2 Updating Rows From Another Table
The UPDATE command can also be used to update rows with values that are located in another
table. This is achieved by embedding a SELECT statement within the UPDATE statement.

UPDATE table1 Choose the target table
SET column1 = Choose the columns to update
(SELECT column2 from table2) Choose the source data
WHERE condition1 Restrict rows to update

Example 1
The below UPDATE statement amends rows in vendorpo from data in vendorpohist.

UPDATE vendorpo
SET vendorpo.purchdate =
(SELECT MAX(vendorpohist.purchdate) from vendorpohist)
WHERE vendorpo.name = vendorpohist.name

1 row updated

TABLE : vendorpo

Name todaysdate purchdate user purchid

London 11-FEB-2004 01-JAN-2004 JOHNS A13

Grey 01-JAN-2003 01-JAN-2004 PAULS A01

Rooster 10-NOV-2003 01-JAN-2004 KAYS A02

Toms 10-MAR-2001 01-JAN-2004 JOHNS A04

8.6 DELETE Statement
The DELETE statement will delete existing rows in a table. Much like the INSERT statement the
DELETE statement can be performed using the following methods,

 Updating columns using literal values.

 Copying rows from another table during the DELETE operation.

 Requesting user input during the DELETE operation.

Before performing a DELETE operation the values being deleted are first checked to determine if
they are belong to any foreign/primary key relationship. If the data targeted for deletion has this
type of integrity constraint then the DELETE operation returns with a “child record found” error.

8.6.1 DELETE with Literal Values
The DELETE statement in its simplest form as per below will delete rows with literal values which
are supplied within the DELETE statement.

DELETE FROM table1 Choose the table to delete from
WHERE condition1 Restrict rows to delete

If the WHERE clause is omitted from the DELETE statement then all rows in the table are
removed.

Example 1
The below UPDATE statement amends rows in vendorpo from data in vendorpohist.

DELETE FROM vendorpo
WHERE name = ‘Rooster’

1 row delete

TABLE : vendorpo

Name todaysdate purchdate user purchid

London 11-FEB-2004 01-JAN-2004 JOHNS A13

Grey 01-JAN-2003 01-JAN-2004 PAULS A01

Toms 10-MAR-2001 01-JAN-2004 JOHNS A04

Rooster row deleted

8.6.2 Deleting Rows Based On Another Table
The DELETE command can also be used to remove rows based on values that are located in
another table. This is achieved by embedding a SELECT statement within the DELETE statement.

DELETE FROM table1 Choose the table to delete from
WHERE value1 = Restrict rows to remove
(SELECT column2 from table2) Choose what to base the delete on

Example 1
The below DELETE statement deletes rows in vendorpo based on data in vendorpohist.

DELETE FROM vendorpo
WHERE vendorpo.name =
(SELECT vendorpohist.name FROM vendorpohist.name
WHERE purchid = ‘A04’)

1 row updated

TABLE : vendorpo

Name todaysdate purchdate user purchid

London 11-FEB-2004 01-JAN-2004 JOHNS A13

Grey 01-JAN-2004 01-JAN-2004 JOHNS A02

Toms row deleted

8.7 Default Values
When inserting or changing values the keyword DEFAULT can be used instead of a value. This
instructs the DML statement to use the predefined DEFAULT value during the DML operation. The
DEFAULT value is declared when the table is created.

INSERT INTO table1 Name of table to insert rows into
VALUES (value1, value2, DEFAULT) Values and default values to use during the DML

Example 1
The below INSERT statement insert a row with the users columns default value of “SYS”.

INSERT INTO vendorpo
VALUES (Davids, ’01-MAR-2004’,’01-MAR-2004’,DEFAULT, ‘A00’)

1 row updated

TABLE : vendorpo

name todaysdate purchdate user Purchid

London 11-FEB-2004 01-JAN-2004 JOHNS A13

Grey 01-JAN-2004 01-JAN-2004 JOHNS A02

Davids 01-MAR-2004 01-MAR-2004 SYS A00

Example 2
The below UPDATE statement amends rows in the vendorpo table with the users columns
default value of “SYS”.

UPDATE vendorpo
SET user = DEFAULT
WHERE name = ‘London’

1 row updated

TABLE : vendorpo

Name todaysdate purchdate user purchid

London 11-FEB-2004 01-JAN-2004 SYS A13

Grey 01-JAN-2004 01-JAN-2004 JOHNS A02

Davids 01-MAR-2004 01-MAR-2004 SYS A00

Rules for default values

 If no default value has been predefined then NULL is used.

 The DEFAULT keyword can be used with INSERT and UPDATE DML operations.

8.8 MERGE Statement
The MERGE operation will perform one of two operations. It will insert data if the data does not
already exist or it will update data if it does exist. The MERGE operation determines if data exists
by a join condition specified in the ON clause.

MERGE INTO table1 alias1 Choose the target table
USING table2 alias2 Choose the source table
ON join_condition Determine the target and source join
WHEN MATCHED THEN Perform update if exists
 UPDATE statements Normal UPDATE statement
WHEN NOT MATCHED THEN Perform insert if doe not exist
 INSERT statements Normal INSERT statement

Example 1
The below MERGE statement inserts and updates rows in the vendorpo table based on the data
in the vendorpohist table. The join condition is based on the name column.

MERGE INTO vendorpo t1
USING vendorpohist t2
ON t1.name = t2.name
WHEN MATCHED THEN
 UPDATE SET
 t1.todaysdate = t2.todaysdate
 t1.purchdate = t2.purchdate
 t1.user = t2.user
 t1.purchid = t2.purchid
WHEN NOT MATCHED THEN
 INSERT VALUES(t2.name,t2.todaysdaye,t2,purchdate,t2,user,t2.purchid)

1 row updated

TABLE : vendorpo

Name todaysdate purchdate user purchid

London 11-FEB-2004 01-JAN-2004 SYS A13

Davids 01-MAR-2004 01-MAR-2004 SYS A00

Grey 01-JAN-2004 01-JAN-2004 JOHNS A02

Rooster 10-NOV-2003 10-NOV-2003 KAYS A02

The above results indicate that ‘Grey’ was updated and ‘Rooster’ was inserted.

8.9 Database Transactions
Database transactions fall into the three below categories.

Database Transaction Types

Type Description

DCL Data Control Language

DDL Data Definition Language

DML Data Manipulation Language

A database transaction commences when a DML statement is executed. The database transaction
will remain active until one of the following conditions,

 A COMMIT or ROLLBACK statement s issued.

 The iSQL session is terminated.

 A DCL or DDL statement is issued.

 The database is shutdown.

Once the transaction is closed the next transaction commences when the next DML statement is
executed.

8.9.1 DCL Transactions
A Data Control Language transaction is one such as GRANT or REVOKE. These transactions are
committed automatically so only one statement exists in the transactions. Because these
transactions commit automatically it is not possible to rollback.

8.9.2 DDL Transactions
A Data Definition Language transaction is one such as CREATE or ALTER. These transactions
are committed automatically so only one statement exists in the transactions. Because these
transactions commit automatically it is not possible to rollback.

8.9.3 DML Transactions
A Data Manipulation Language transaction is one such as INSERT, UPDATE or DELETE. These
transactions are described in section 8.4, 8.5 AND 8.6.

8.9.4 Transaction Lifecycle
The lifecycle of a transaction can be controlled through three commands. These three commands
instruct the Oracle server to perform certain activity with the contents of a transaction as listed
below.

Transaction Control Commands

Command Description

COMMIT Applies the contents of the transaction to the database. Once the
COMMIT statement is issued it cannot be undone

ROLLBACK Drops the contents of the transaction. Once the ROLLBACK
statement is issued it cannot be undone

SAVEPOINT x Marks a pointer in the tranaction list (Where x is the name of the
savepoint). The ROLLBACK statement can be issued with instruction
to rollback to the savepoint.

ROLLBACK
TO
SAVEPOINT x

Drops the contents of the transaction back to the specified savepoint.
Once the ROLLBACK TO SAVEPOINT statement is issued it cannot
be undone

One important point to remember is the available set of transaction control commands only
execute in the scope of the current SQL session. The commands will have no impact to others
users performing DML operations.

All savepoints are given a marker name. The marker name instructs the ROLLBACK command
where to rollback to. If the marker name is used a second time it will overwrite the position of the
first marker.

Example1
The above commands would typically be used as per the below transaction lifecycle,

Transaction Groups DML Operations Transaction Control Operations

Transaction 1 Start of transaction

INSERT…

DELETE…

 ROLLBACK

Transaction 2 Start of transaction

UPDATE…

 SAVEPOINT X

INSERT…

 ROLLBACK TO X

 COMMIT

In Transaction 1 the ROLLBACK statement will drop all the changes made by the INSERT and
DELETE operations leaving the data in a state as it was from the start of transaction 1.

In Transaction 2 there is a SAVEPOINT X command which bookmarks a position in the set of DML
operations. At a later date the ROLLBACK TO X command is issued which instructs the oracle
server to rollback to the state of the data as it was when the SAVEPOINT X command was issued.

8.9.5 Data State
The visibility of data to users through the course of the transaction lifecycle changes depending on
the occurrence of any COMMIT or ROLLBACK commands.

Example1
The below example demonstrates the visibility of the data during the course of a simple
transaction.

Transaction Groups DML Operations Data State

 INSERT… Y

DELETE… Y

ROLLBACK… X

Transaction 2 UPDATE… Y

INSERT… Y

COMMIT Z

Data State X

 Data is visible to all users.

 Changes are rolled back to original data state.

 The data rows being changed are unlocked.

Data State Y

 Data is visible only to user changing the data.

 Changes are not permanent in the database and can be rolled back.

 The data rows being changed are locked.

Data State Z

 Data is visible to all users.

 Changes are made permanent in the database and cannot be rolled back.

 All SAVEPOINT references are no longer valid.

 Locks on the data rows are removed.

8.9.6 Implicit Transaction Handling
A transaction is completed automatically under the following conditions,

Implicit Transaction Handling

Event Action

The iSQL session is terminated Automatic ROLLBACK

A DCL or DDL statement is issued Automatic COMMIT

The database is shutdown Automatic ROLLBACK

System failure Automatic ROLLBACK

Automatic COMMIT Automatic COMMIT

Note :
When the Automatic COMMIT database parameter is set to true if forces a COMMIT after every
DML transaction.

8.9.7 Statement Level Rollback
The Oracle server inserts implicit savepoints between users transactions. This is
performed so that if any statement within a transaction should fail abnormally the data
state is rolled back to the point of the last implicit savepoint.

Example 1
The below example demonstrates how the Oracle server inserts and uses implicit
savepoints to achieve statement level rollback.

Transaction Groups DML Operations Transaction Control Operations

Transaction 1 Start of transaction

INSERT…

 Implicit SAVEPOINT

DELETE…

 Implicit SAVEPOINT

UPDATE…

 Implicit SAVEPOINT

INSERT… Error occurs

8.9.8 Read Consistency
Read consistency is an automatic process controlled by the Oracle server which ensures
all users have constant read access to data at all times. This is achieved by making data
available as it was before the last COMMIT.

Read consistency ensures the following,

 All changes within one users transaction do not impact with the changes in
another users transaction.

 Data is available for read while other transactions are writing it.

 Data is available for write while other transactions are reading it.

Example 1
The below demonstrates how read consistency is managed by the Oracle Server,

Before Transaction

During Transaction

After COMMIT

After ROLLBACK

Data block

Rollback

block
User A User B

Data block Rollback

block
User A User B

Data block

Rollback

block
User A User B

Data block

Rollback

block
User A User B

8.9.9 Locking
Locking is an automatic process controlled by the Oracle server which is used to ensure
that concurrent DML operations do not interfere with each other and produce erroneous
results. The locking is carried out at the row level, this means that when specific rows in
one table are being updated they are not available for update by any other user. Once the
transaction performing the update is completed the locks are released.

8.9.9.1 Implicit Locking
Implicit locking occurs automatically and is managed by the Oracles server. These type
off locks occur for all SQL statements except the SELECT statement. Once the
transaction is completed all locks are release from the database object and the data it
contains. There are two levels of implicit locking modes as explained below. Both of these
modes occur during DML operations.

Shared mode
The shared mode lock occurs at the object level. For example, when rows in a table are
being updated the table is locked in shared mode. This means that DDL operations are
inhibited on the table.

Exclusive mode
The exclusive mode lock occurs at the data level. This permits other user to acquire
shared mode locks on the same objects but places exclusive locks on data within the
object. Once an exclusive lock has been established against data no other user can
acquire an exclusive lock on the same data.

8.9.9.2 Explicit Locking
Users can also lock data manually. This is known as explicit locking.

8.10 Summary

 Data manipulation language (DML) operations are performed when data in the
database is inserted, deleted or updated.

 A single or series of DML operations belongs to what is known as a transaction.

 The INSERT statement will insert rows into a table.
 The UPDATE statement will update existing rows in a table.
 The DELETE statement will delete existing rows in a table

 The keyword DEFAULT can be used instead of a value. This will use the
predefined DEFAULT value during a DML operation.

 The MERGE will insert data if it does not already exist otherwise it will update
existing data.

 A DCL (Data Control Language) transaction is one such as GRANT or REVOKE.

 A Data Definition Language transaction is one such as CREATE or ALTER.

 A Data Manipulation Language transaction is one such as INSERT, UPDATE or
DELETE.

 A database transaction commences when a DML statement is executed.

 Data visibility varies through the course of a transaction lifecycle depending on the
occurrence of any COMMIT or ROLLBACK commands.

 Read consistency ensures all users have constant read access to data at all times.

 Locking ensures that concurrent DML operations do not interfere with each other
and produce erroneous results.

8.11 Exercises
 Insert the following values into the employees table,

Field Values

Name Adams

Postcode 2345

Gender M

Age 32

 Insert the following values into the employees table and the round the Age to the closest
whole number

Field Values

Name Charles

Postcode 2345

Gender M

Age 49.6

 Change the postcode to 2360 for all record in the employees table which have a
postcode of 2345. Make sure that the update operation prompts for the new
postcode.

 Delete all record in the employees table who have a postcode of 2345.

 Confirm the successful use of the COMMIT and ROLLBACK commands by
performing the following,
Session 1, Update all employee postcodes to 1000 (Do not COMMIT)
Session 1, Query all employee postcode (What are the results?)
Session 2, Query all employee postcode (What are the results?)
Session 1, COMMIT the update operation
Session 1, Query all employee postcode (What are the results?)
Session 2, Query all employee postcode (What are the results?)

 Confirm the use of implicit locking by performing the following,
Session 1, Update all employee postcodes to 2000 (Do not COMMIT)
Session 2, Update all employee postcodes to 3000 (What are the results?)
Session 1, ROLLBACK the update operation

9. Table Management
9.1 Objectives
After this chapter you should be able to perform the following,

 Perform the below table operations,
- CREATE
- DROP
- RENAME
- TRUNCATE
- ALTER

 Understand the datatypes that are available when declaring columns in a table.

9.2 Test Data
The below table information is used as test data for the examples shown throughout this chapter.

9.3 Object Types
The database provides a series of structures to store data and assist with data storage as
per below,

Object Types

Type Description

Table Provides basic storage for data constructed of rows and columns

View Logical representation of data from table(s)

Sequence Sequential number generator

Index Provides indexed representation of specific table columns

Synonym Used for declaring alias names for database objects

The above object types are merely an example of the available object types. Oracle
provide a lot more object types for various types of storage and functionality.

Object Rules

 Must start with a letter.

 Must be between 1 and 30 characters long.

 Can only contain the following characters,
- A-Z
- a-z
- 0-9
- _, $ and #

 Duplicate object names are prohibited.

 Object names cannot be the same as reserved words. For example, you cannot
create a table called “SELECT”.

 Object names are not case sensitive.

9.4 CREATE TABLE
The CREATE TABLE data definition language statement is used to create tables. Unless
specified otherwise this table is created within the users default tablespace and by default
is ready to store data.

CREATE TABLE Command to create the table
schema.table_name Specify which schema to use and the table name
column_name Every column in a table must have a name
datatype Every column in a table must be of a certain datatype
size Every column in a table must be of a certain size
DEFAULT value Value is used if data is omitted during insert

Example 1
The below CREATE TABLE statement creates a table called POSTBOX,

CREATE TABLE POSTBOX(
PO_NUM NUMBER(2),
SUBURB STRING(20),
NAME STRING(20))

Table Created

Example 2
The tables structure can be verified/displayed by using the describe command as per the
below example,

DESC POSTBOX

NAME NULL? TYPE

PO_NUM NUMBER(2)

SUBURB STRING(20)

STRING STRING(20)

Note:

 The CREATE TABLE statement is DDL so an automatic COMMIT occurs.

 Only users who have the CREATE TABLE privilege can create tables.

 To avoid null values is table columns a default value for a column can be specified
when the table is created. In the event of a null value in a table column during an
INSERT operation this value will be inserted instead. The DEFAULT value can be
of a literal value, SQL operation or expression.

9.5 Table Scope
All tables in the database belong to a schema(user). The schema is considered as the
owner of the table. Tables within one schema are not visible to another schema unless
the relevant permission is granted. Once the relevant permission is granted from one
schema to another the table will be become visible. To reference a table that exists in
another schema the table must be prefixed with the owning schema name.

Example 1
The below example uses the owning schema name to reference a table.
SELECT * FROM Standard SELECT clause
schema.table_name Specify which schema to use and the table name

9.6 Tables used in Oracle
9.6.1 User Tables
All tables created by the user are owned by that user. These tables are used to store
normal user data.

9.6.2 Data Dictionary Tables
Data dictionary tables store information about the database. These tables are managed
by the Oracle server and owned by the DBA user SYS. The values in these tables should
not be changed by any user. The data within the tables is not legible so various data
dictionary views have been built upon the tables to provide an easy to understand
interface between the user and the data dictionary.

Data Dictionary Scope
The below diagram illustrates the data dictionary views available to the user.

Example 1
The below example lists all the table accessible to the user,

SELECT table_name from ALL_TABLES

Table list
.
.
……

Example 2
The below example lists all objects owned by the user,

SELECT * from USER_CATALOG

Object list
.
.
……

DBA_* and V$ (Data dictionary information for DBA users only)

ALL_* (Data dictionary information about objects accessible to the user)

USER_* (Data dictionary information about objects owned by the user)

9.7 Data Type
The Oracle server permits various data types for storing all form of information in tables.
The below table illustrates the data type offered by the Oracle server.

Data Types

Type Description

VARCHAR2(num) Variable length alphanumeric

CHAR(num) Fixed length alphanumeric

NUMBER(num,dec) Variable length numeric. Format is num.dec (E.g, 4.1 = 9999.9)

DATE Date and time values between 1st Jan 4712 B.C to 31st Dec 9999 A.D

LONG Variable length alphanumeric (2Gb max)

CLOB Alphanumeric data (4Gb max)

RAW Raw binary data (2K bits max)

LONG RAW Raw binary data (2Gb max)

BLOB Raw binary data (4Gb max)

BFILE Binary file storage (4Gb max)

ROWID 64 bit encoded row identification of a single row in the database

Data Type Restrictions
Long data types place a few restrictions on table operations as per below,

 When creating a table using a sub-query the content of any LONG column will not
be copied.

 When using SELECT statements a LONG column cannot be used in the GROUP
BY or ORDER BY clause.

 Only one LONG data type is permitted per table.

 Constraints cannot be defined on a LONG data type.

Most table restrictions relate to the use of LONG data types. If there are any table
requirements which conflict with the above constrictions you may need to consider using a
CLOB data type rather than a LONG.

9.8 DATETIME Data Types
Oracle 9i introduces several new Date and Time data type features as per below.

Data Types

Type Description

TIMESTAMP Date and time permitting fractions of second to be stored

INTERVAL YEAR TO MONTH Duration of time in months

INTERVAL DAY TO SECOND Duration of time in seconds

9.8.1 Timestamp
The TIMESTAMP data type provides the same functionality as the3 DATE data type plus
more. Besides the usual Day, Month, Year, Hour, Minute and Second components it also
allows fractions of a second. The precision of the fractional component is determined
when the data type is declared as per below.

