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Chapter 1

Introduction

Aivika is a female Mari name pronounced with accent on the last syllable. Aivika
is also a comprehensive .NET simulation library which I invented during my
study of the functional programming. The library allows you to use System
Dynamics, Discrete Event Simulation (DES) and the agent-based modeling in
your models. Also you can create activity-oriented, event-oriented and process-
oriented discrete simulations. Moreover, you can create hybrid models based on
all these paradigms. I have invented a common unified scheme of the modeling.
By itself this is not a new event, for there is already an excellent software tool
AnyLogic! that allows you to create and simulate hybrid models. But what
can be new is a simplicity of the library and an easiness of its integration with
high-level general-purpose programming languages with help of which you can
write .NET applications.

All began in November 2009 when I implemented a simple monad in the
Haskell programming language to integrate the system of differential equations
with help of Euler’s method and the Runge-Kutta method. It was a working
prototype of the Dynamics workflow described in this book. Then in December
2009 I transfered it to F#, about which I wrote a message in my Russian blog?
in the beginning of February 2010. Then I published this information in my
English blog® and on the main forum?* of the F# developers. At the same time
I created project Aivika® on SourceForge and put the first version of the library.

It wasn’t a new experience for me in System Dynamics. Earlier I developed
simulation tools Simtegra MapSys® and MapSim’ together with Dr. Zahed
Sheikholeslami. So, I knew well how such simulation tools could be imple-
mented. Also I studied some DES models in the University. What was new for
me was the agent-based modeling.

Thttp:/ /www.xjtek.com/
2http://dsorokin.blogspot.com/2010/02/blog-post.html
3http://dsorokin-en.blogspot.com/2010/02/dynamics-modeling-monad.html
4http://cs.hubfs.net/forums/thread/13043.aspx

Shttp://sourceforge.net /projects/aivika,/

Shttp://www.simtegra.com/

Thttp:/ /sourceforge.net/projects/mapsim/
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In March 2010 I got to know about SimPy®, an excellent simulation library
written in Python and implementing the process-oriented paradigm of DES.
It was fantastic but I almost instantly remembered that continuations of the
functional programming would allow me to achieve the same result. So, I created
another monad, aka the DynamicsCont workflow.

In April 2010 T made publicly available the next version of Aivika which
already supported System Dynamics and three paradigms of DES. Also I trans-
fered a few models described in a wonderful Russian book by Ilya Trub. It
gave me a confidence that Aivika can be a useful practical tool. I intentionally
implemented some of those models as hybrid ones and it worked!

In May 2010 I read one interesting Russian article by Andrei Borshchev,
one of the creators of AnyLogic. The introductory article describes different
simulation paradigms but it is focused mainly on the agent-based modeling.
So, in that month I created a new version of Aivika that supported the agent-
based modeling as well. Also it was a significantly optimized version, where the
module of System Dynamics was in 5 times faster than it was in the previous
version. The new version had number 2.0.

Now Aivika supports three very different paradigms of simulation. It turned
out that all them can be united on basis of monads that came from Haskell
and mathematics in the world of ordinary programming. I think that Aivika
is an excellent tool for fast prototyping of complex, probably hybrid, mod-
els. Aivika supports the discrete-continuous simulation. Also it can work with
agents. These capabilities have a drawback. The simulation is slow and it es-
sentially relies on the effective memory management system. The simulation
speed was not my goal and I think that it can be rather sufficient in many cases
taking into account the recent progress in the software and hardware of modern
computers.

One of the main features of the monads is that they allow combining different
code together. The monad can be thought as some abstract computation and its
bind function allows us to create a manageable chain of such computations. For
Aivika it means that the library can be easily integrated with .NET applications.
The integration can be in the both directions. We can call external functions
within the simulation. Also we can run simulations from the external .NET code.
Here I think that Aivika is a promising tool for creating visualized simulations,
including web-based Silverlight simulations that could be downloaded from the
Internet and then played in the browser.

I hope that you will enjoy my library Aivika and that the represented book
will help you in this. Here I suppose that the reader is already familiar with
basics of System Dynamics, Discrete Event Simulation and the agent-based
modeling. Also I suppose that you are familiar with the concept of monads at
least in scopes of the Haskell programming language. Understanding monads is
crucial for understanding methods of Aivika, its particular approach of building
hybrid models.

8http://simpy.sourceforge.net/
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Chapter 2

The Aivika Simulation
Library

All the described below in this book is implemented in my project Aivika, which
I initially created on SourceForge.net in February 2010:

http://sourceforge.net /projects/aivika/.

The project is released under the BSD license. The main target audience
are the F# developers, although the module of System Dynamics can be used
from C# as well. The corresponded function names are capitalized in the DLL
file to look C#-friendly. In F# these names look as they are described in this
book.

I tested the library on Windows under .NET and on Linux under Mono.
In some tests the both frameworks show the same speed. But the process-
oriented simulation (DES) tends to be significantly faster under .NET. Perhaps
it is related to TCO (tail-call optimization), which is better supported by .NET
CLR.

I think that Aivika should work with Silverlight as well, although I didn’t
test it. To generate strong pseudo-random numbers, Aivika uses one standard
cryptographic module. It may cause some problems on Silverlight. In case of
need this dependency can be removed as there is also a more simple random
number generator.


http://sourceforge.net/projects/aivika/
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Chapter 3

Dynamics Workflow Basics

In the heart of Aivika lies the Dynamics workflow. It identifies a computation
of values of some dynamic process varying in time. All in this book is based
on this workflow whether we use System Dynamics, discrete event simulation
or agent-based modeling. Everywhere the Dynamics workflow performs a key
role of glue that joins very different parts. As a result, it allows us to create
and simulate hybrid models. At the same time the Dynamics workflow remains
very easy-to-use.

3.1 Getting Started with Dynamics Workflow

The Dynamics workflow defines a computation of values of some dynamic pro-
cess. The value of the corresponded computation has type Dynamics<’a>. One
value of this type implies a whole set of other values of type ’a that define
the process. The Dynamics module of Aivika contains two important functions
that allow us to run any dynamic process and receive its values by the specified
simulation specs:

Table 3.1: Run Functions

Function and type Description
Dynamics.run: Runs the computation using the specified
Dynamics<’a> -> simulation specs and then returns the values

Specs -> seq<’a> in all integration nodes

Dynamics.runLast: Runs the computation using the specified
Dynamics<’a> -> simulation specs and then returns the value
Specs -> ’a in the last integration node

The run function returns the values in all integration nodes. The runLast

11
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function returns only the value in the last node. The both functions accept two
arguments. The first argument can be any dynamic process. The second one
defines the simulation specs. These specs define the start time of simulation,
stop time, integration time step, the method of integration and the method of
generating random values. All them are defined by a value of type Specs:

type Method = Euler | RungeKutta2 | RungeKutta4
type Randomness = SimpleRnd | StrongRnd

type Specs = {

StartTime: float; StopTime: float; DT: float;
Method: Method; Randomness: Randomness

The Method type has the obvious values which define Euler’s method, the
2nd and 4th order Runge-Kutta methods respectively. The Randomness type
has two values, one of which defines a fast but weak method of generating the
pseudo-random values while the last value corresponds to a more strong but
slow method.

In examples of this chapter I will use the following simulation specs:

>open Maritegra.Aivika;;
>let specs = {

StartTime=0.0; StopTime=10.0; DT=1.0;
Method=RungeKutta4; Randomness=StrongRnd
}5s

val specs : Specs = {StartTime =
StopTime = 1
DT = 1.0;
Method = RungeKutta4;
Randomness = StrongRnd;}

0.0;
0.0

’

The simplest computation is that one which returns always the same value,
i.e. constant. The Dynamics module contains the eta function which creates
such a computation by the specified input value:

Table 3.2: Eta Function

Function and type Description

Dynamics.eta: Returns a computation for the specified value
’a -> Dynamics<’a>
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This function is polymorphic. Sometimes such a function is also called
generic. Here it means that the function will take a value of any type and
return the corresponded computation. We can test it in the F# Interactive.
The dynamic process must return the same values.

> let d1 = Dynamics.eta 3;;
val d1 : Dynamics<int>

> Dynamics.run dl specs |> Seq.tolist;;
val it : int list = [3; 3; 3; 3; 3; 3; 3; 3; 3; 3; 3]

> let d2 = Dynamics.eta ("Hi", [0, 11);;
val d2 : Dynamics<string * (int * int) list>

> Dynamics.run d2 specs |> Seq.tolist;;

val it : (string * (int * int) list) list =
CCmeiv, [Co, 1)1); ("Hi", [(0, D1 ("Hi", [(0, 1)]1);
("Hi", [C0, D1); ("Hi", [(0, 1)I); ("Hi", [(0, 1D1);
("Hi", [C0, ©DI1); (*Hi", [0, 1)1); ("Hi", [(0, 1DI1);
("Hi", [C0, 1)1); ("Hi", [(0, 1DD)]

Please note that in the last case we define a dynamic process that returns a
tuple of string and list. Although in the course of this book we’ll use numeric
simulations, it is important to remember that the eta function accepts an ar-
gument of any type and that the dynamic process can also return values of any
type. We'll constantly use this fact to define complex dynamic systems, because
the dynamic system can be considered as a more complex dynamic process that
returns lists, or tuples, or even objects instead of ordinary values. We’ll see it
soon.

The eta function is so important and so widely used that Aivika defines its
synonym in module SD, which can be opened if you write in your code open
Maritegra.Aivika.SD. Then all functions from this module can be referenced
to without direct indicating the module name. It means that you can write just
eta in your code.

3.2 Using Arithmetic Operators

Arithmetic operators are overloaded for values of type Dynamics<float>. More-
over, you can mix these values with floating point numbers. The result will have
type Dynamics<float>.

> let d3 = 5.0 + (eta 2.0) * (eta 3.0);;

val d3 : Dynamics<float>
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> Dynamics.run d3 specs |> Seq.tolist;;
val it : float list =

[11.0; 11.0; 11.0; 11.0; 11.0;

11.0; 11.0; 11.0; 11.0; 11.0; 11.0]

It allows us to write equations in a simple readable form. The same dynamic
process d3 could be also defined in the following way:

let d3 =
let a = eta 2.0
let b = eta 3.0
let c = 5.0+ ax*xb
in c

3.3 Using Mathematical Functions

Like the arithmetic operators the following mathematical functions are over-
loaded for values of type Dynamics<float>: abs, acos, asin, atan, atan2,
ceil, exp, floor, truncate, round, log, 1loglO, sqrt, cos, cosh, sin, sinh,
tan and tanh. Also the binary operator ( ** ) is overloaded as well.

> let d4
let db

eta 2.0
(cos d4)**d4 + (sin d4)*xd4;;

val d4 : Dynamics<float>
val d5 : Dynamics<float>

> Dynamics.run d5 specs |> Seq.tolist;;
val it : float list =
[1.0; 1.0; 1.0; 1.0; 1.0; 1.0; 1.0; 1.0; 1.0; 1.0; 1.0]

3.4 Using Computation Expression Syntax

The Dynamics workflow has builder dynamics. It allows us to create sophis-
ticated computations of any complexity. Actually, the introduced before eta
function is a synonym of the Return method of this builder.

> let map f m = dynamics {
let! x = m
return (f x)

}ss

val map : (’a -> ’b) -> Dynamics<’a> -> Dynamics<’b>
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> let d6 = d5 |> map (fun x -> x + 1.5);;
val d6 : Dynamics<float>

> Dynamics.run d6 specs |> Seq.tolist;;
val it : float list =
[2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5; 2.5]

The defined above function map is important. For example, it can be applied
for numerical integration of mathematical functions as it will be shown further
in section 4.5, page 28. Therefore function map is a part of the Dynamics module.

Table 3.3: Map Function

Function and type Description

Dynamics.map: Maps values of computation m using
f:(’a -> ’b) > transformation function f
m:Dynamics<’a> ->

Dynamics<’b>

The computation expression is the main way of calling external .NET func-
tions within your simulation. But you should carefully call them. If your func-
tion is pure, i.e. has no assignment nor any other side-effect, then you can call
such a function at almost any place. But if your external function has a side ef-
fect, then in general you should avoid calling it from the computation expression.
The Dynamics workflow usually means a delayed computation. No computation
order is implied. In general case it is unknown at which moment and in which
order the computation will be applied. However, there are workarounds. See
section 4.13, page 45, to know how you can use your .NET functions within the
simulation.
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Chapter 4

System Dynamics

The models of System Dynamics can represent complex feedback systems vary-
ing in time. The Dynamics workflow allows us to define and simulate such
models. The main advantage of this approach is that the model can be defined
declaratively in a notation closed to mathematical. Aivika supports a wide
range of ready-to-use functions which are standard and can be found in many
software simulation tools such as Simtegra MapSys', Vensim? and ithink®.

4.1 Getting Started with Differential Equations

The SD module contains the integ function that returns an integral by the
specified derivative and initial value.

Table 4.1: Integral Function

Function and type Description

integ: Returns the integral of rate d and
d:Lazy<Dynamics<float>> -> initial value i
i:Dynamics<float> ->

Dynamics<float>

The derivative must be defined as a delayed value, which allows us to declare
recursively the differential equations with loopbacks as shown further.

> open Maritegra.Aivika;;
open Maritegra.Aivika.SD;;
> let rec a = integ (lazy (- ka * a)) (eta 100.0)

\

Thttp://www.simtegra.com
2http://www.vensim.com
Shttp://www.iseesystems.com
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and b = integ (lazy (ka * a - kb * b)) (eta 0.0)
and ¢ = integ (lazy (kb * b)) (eta 0.0)

and ka = 1.0

and kb = 1.0;;

val a : Dynamics<float>
val b : Dynamics<float>
val c¢ : Dynamics<float>
val ka : float = 1.0
val kb : float = 1.0

This system describes a simple chemical reaction. In the language of math-
ematics these equations look like:

a = —kaxa, a(ty) = 100,

h = kaxa—kbxb, — b(ty) =0,
¢ = kbxb,  c(ty) =0,

ka = 1,

kb = 1.

Now we can simulate the model and, for example, return values of variable
a in the specified integration nodes. For simplicity I will use a large enough
integration time step for this task.

>let specs = {

StartTime=0.0; StopTime=10.0; DT=1.0;
Method=RungeKutta4; Randomness=StrongRnd

}is
val specs : Specs = {StartTime = 0.0;
StopTime = 10.0;
DT = 1.0;

Method = RungeKutta4;
Randomness = StrongRnd;}

> Dynamics.run a specs |> Seq.tolist;;
val it : float list =
[100.0; 37.5; 14.0625; 5.2734375; 1.977539063; 0.7415771484;
0.2780914307; 0.1042842865; 0.03910660744; 0.01466497779;
0.005499366671]

But we often need more information than just one variable. Therefore the
Dynamics module contains helper functions that take a collection of dynamic
processes and wrap them in a more complex dynamic process. Two of such
functions are ofList and ofArray:
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Table 4.2: Basic Sequential Functions

Function and type Description

Dynamics.ofList: Wraps a list of computations in a compound
Dynamics<’b> list -> computation
Dynamics<’b list>

Dynamics.ofArray: Wraps an array of computations in a compound
Dynamics<’b> [] -> computation
Dynamics<’b []>

Now we can use one of them to wrap variables a, b and ¢ from our example
in a compound dynamic process and then receive data for all these variables.
To this list we can also add the built-in time variable that returns the current
simulation time. This variable is described in section 4.2.

> let s = Dynamics.ofArray [| time; a; b; c |]1;;
val s : Dynamics<float []>
> let r = Dynamics.run s specs |> Seq.toList;;

val r : float [] list =

[[10.0; 100.0; 0.0; 0.0171;

[11.0; 37.5; 33.33333333; 29.166666671];

[12.0; 14.0625; 25.0; 60.9375|];

[13.0; 5.2734375; 14.0625; 80.6640625|];

[14.0; 1.977539063; 7.03125; 90.99121094|];

[15.0; 0.7415771484; 3.295898438; 95.96252441]];
[16.0; 0.2780914307; 1.483154297; 98.23875427|];
[17.0; 0.1042842865; 0.6488800049; 99.24683571]];
[18.0; 0.03910660744; 0.2780914307; 99.68280196]] ;
[19.0; 0.01466497779; 0.1173198223; 99.8680152|];

[110.0; 0.005499366671; 0.0488832593; 99.94561737|]]

It is worthy to note that variables a, b and ¢ are simulated in the both cases.
If some variable is used in the simulation then it will be simulated whether its
data are returned or not with help of the run function. This function runs all
necessary computations and returns only a specified portion of data. We can
return data in any form and use the computation expression syntax in case of
need.

For example, the following function is equivalent to the predefined zip func-
tion from module Dynamics.

let zip’ ml m2 = dynamics {
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let! x1 ml
let! x2 m2
return (x1, x2)

This function allows us to wrap two computations in one compound compu-
tation. The input computations may have different types.

> let s2 =
Dynamics.zip time (Dynamics.zip a (Dynamics.zip b c));;

val s2 : Dynamics<float * (float * (float * float))>
> let r2 = Dynamics.run s2 specs |> Seq.tolist;;

val r2 : (float * (float * (float * float))) list =

[(0.0, (100.0, (0.0, 0.0)));

(1.0, (37.5, (33.33333333, 29.16666667))) ;

(2.0, (14.0625, (25.0, 60.9375)));

(3.0, (5.2734375, (14.0625, 80.6640625)));

(4.0, (1.977539063, (7.03125, 90.99121094)));

(6.0, (0.7415771484, (3.295898438, 95.96252441)));
(6.0, (0.2780914307, (1.483154297, 98.23875427)));
(7.0, (0.1042842865, (0.6488800049, 99.24683571)));
(8.0, (0.03910660744, (0.2780914307, 99.68280196)));

(9.0, (0.01466497779, (0.1173198223, 99.8680152)));
(10.0, (0.005499366671, (0.0488832593, 99.94561737)))]

The computation, i.e. the simulation, is not started until we explicitly call
the run function. A value of type Dynamics<’a> only returns something (a
function) that knows how to simulate the specified dynamic process but the
value itself doesn’t contain simulation data. Using the built-in variables makes
it especially obvious.

4.2 Using Built-in Variables

The SD module from the Maritegra.Aivika name space has four predefined
variables that return the information about the integration nodes. All these
variables have type Dynamics<float>. Since they are immutable, I will call
them values as it is accepted in the functional programming.

Table 4.3: Built-in Variables

Value and type Description

starttime: Returns the start time
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Dynamics<float>

stoptime: Returns the stop time
Dynamics<float>

dt: Returns the integration time step
Dynamics<float>

time: Returns the current simulation time
Dynamics<float>

For illustration we can wrap all four built-in values in one compound com-
putation using the computation expression syntax.

> open Maritegra.Aivika;;
> open Maritegra.Aivika.SD;;
> let d1 = dynamics {
let! x1 = starttime
let! x2 stoptime
let! x3 = dt
let! x4 = time
return (x1, x2, x3, x4)

}ss

val d1 : Dynamics<float * float * float * float>

Now we can test it using different simulation specs. The computation must
always return data corresponded to the specified specs. There is no magic in it.
These built-in values are actually implemented as functions that know how to
extract the necessary data from the simulation specs.

>let makeSpecs xl1 x2 x3 = { StartTime=x1;
StopTime=x2;
DT=x3;
Method=RungeKutta4;
Randomness=SimpleRnd };;

val makeSpecs : float -> float -> float -> Specs

> makeSpecs 1.0 5.0 1.0 |> Dynamics.run d1 |> Seq.tolList;;
val it : (float * float * float * float) list =

(1.0, 5.0, 1.0, 1.0); (1.0, 5.0, 1.0, 2.0);

(1.0, 5.0, 1.0, 3.0); (1.0, 5.0, 1.0, 4.0);

(1.0, 5.0, 1.0, 5.0)]
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> makeSpecs 10.0 100.0 0.01 |> Dynamics.run di;;
val it : seq<float * float * float * float> =
seq
[(10.0, 100.0, 0.01, 10.0); (10.0, 100.0, 0.01, 10.01);
(10.0, 100.0, 0.01, 10.02); (10.0, 100.0, 0.01, 10.03); ...]

Please note how the fourth item varies. It always contains the current simu-
lation time. Using the time built-in value and computation expression syntax,
we can create rather complicated dynamic processes varying in time. T'wo wave
functions defined below are a simple example of such processes.

let sinWave a p = a * sin (2.0 * Math.PI * time / p)
let cosWave a p = a * cos (2.0 * Math.PI * time / p)

These two functions are included in the standard library of Aivika. Like the
built-in variables they are defined in the SD module.

Table 4.4: The Wave Functions

Function and type Description

sinWave: Returns the sine wave of amplitude a and
a:Dynamics<float> -> period p

p:Dynamics<float> ->

Dynamics<float>

cosWave: Returns the cosine wave of amplitude a and
a:Dynamics<float> -> period p

p:Dynamics<float> ->

Dynamics<float>

To construct computations that would depend on the past, we need addi-
tional tools though. Differential equations are an example of such computations.
These equations are usually an origin of dynamism in the model. To allow you
to define them in an easy and intuitive way close to mathematical notation,
Aivika provides a set of built-in functions.

4.3 Declaring Integrals and Differential Equa-
tions

The SD module contains functions that create integrals as computations of type
Dynamics<float>. After a simulation is started these computations integrate
the underlying differential equations using the specified method and then return
the results of integration in the specified nodes. A linear interpolation is used
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for all other time values. Thus, the resulting functions look like continuous ones
although the integration method returns data in tabular form.

To increase the accuracy of the integration method, you should usually de-
crease the time step, i.e. increase the number of integration nodes. But it leads
to consuming more memory and slowing down the simulation. Therefore it is
necessary to find a balance.

Table 4.5: Basic Integral Functions

Function and type

Description

integ:

Returns the integral of rate £ and

f:Lazy<Dynamics<float>> -> initial value i

i:Dynamics<float> —>

Dynamics<float>

smooth: Returns a first order exponential smooth
x:Dynamics<float> -> of x over time t
t:Lazy<Dynamics<float>> ->

Dynamics<float>

smoothl: Returns a first order exponential smooth
x:Lazy<Dynamics<float>> -> of x over time t starting at i
t:Lazy<Dynamics<float>> ->

i:Dynamics<float> —->

Dynamics<float>

smooth3: Returns a third order exponential smooth
x:Dynamics<float> -> of x over time t
t:Lazy<Dynamics<float>> ->

Dynamics<float>

smooth3I: Returns a third order exponential smooth
x:Lazy<Dynamics<float>> -> of x over time t starting at i
t:Lazy<Dynamics<float>> ->

i:Dynamics<float> —->

Dynamics<float>

smoothN: Returns an n’th order exponential smooth
x:Dynamics<float> -> of x over time t
t:Lazy<Dynamics<float>> ->

n:int ->

Dynamics<float>

SmoothNI: Returns an n’th order exponential smooth
x:Lazy<Dynamics<float>> -> of x over time t starting at i
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t:Lazy<Dynamics<float>> ->
n:int ->
i:Dynamics<float> ->
Dynamics<float>

delayl:
x:Dynamics<float> ->
t:Dynamics<float> ->
Dynamics<float>

delaylI:
x:Lazy<Dynamics<float>> ->
t:Dynamics<float> ->
i:Dynamics<float> ->
Dynamics<float>

delay3:
x:Dynamics<float> ->
t:Dynamics<float> ->
Dynamics<float>

delay3I:
x:Lazy<Dynamics<float>> ->
t:Dynamics<float> ->
i:Dynamics<float> ->
Dynamics<float>

delayN:
x:Dynamics<float> ->
t:Dynamics<float> ->
n:int ->
Dynamics<float>

delayNI:
x:Lazy<Dynamics<float>> ->
t:Dynamics<float> ->

n:int ->

i:Dynamics<float> ->
Dynamics<float>
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Returns a first order exponential delay
of x for time t conserving x

Returns a first order exponential delay
of x starting with i for time t
conserving x

Returns a third order exponential delay
of x for time t conserving x

Returns a third order exponential delay
of x starting with i for time t
conserving x

Returns an n’th order exponential delay
of x for time t conserving x

Returns an n’th order exponential delay
of x starting with i for time t
conserving x

The integral functions use the delayed parameters whenever it makes sense.
You can consider it as a very useful tool. They actually allow us to define
loopbacks explicitly. In most situations the F# compiler itself detects whether
the system of differential equations is resolvable or not. Such equations look
so natural as they would be written in mathematical notation. The modeler
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focuses more on what to simulate rather than how to simulate. Such a style of
defining the task is called declarative. For example, a simple model provided in
section 4.1 was defined in a declarative manner.

The primary integral function is integ. All other functions from this table
are derivative and they are expressed through the integ function. Below is
shown a definition of the smooth3I function.

let smooth3I x t i =
let rec y = integ (lazy ((sl - y) / (t.Value / 3.0))) i
and s1 = integ (lazy ((sO - s1) / (t.Value / 3.0))) i
and sO = integ (lazy ((x.Value - s0) / (t.Value / 3.0))) i
in y

There are also two auxiliary functions forecast and trend defined in the
SD module.

Table 4.6: Auxiliary Integral Functions

Function and type Description

forecast: Forecasts for x over the time horizon hz
x:Dynamics<float> -> using an average time at
at:Dynamics<float> ->

hz:Dynamics<float> ->

Dynamics<float>

trend: Returns the fractional change rate of x using
x:Dynamics<float> ->  the average time at and initial value i
at:Dynamics<float> ->

i:Dynamics<float> ->

Dynamics<float>

These two functions are defined in Aivika in the following way.

let forecast x at hz =
x * (1.0 + (x / smooth x (lazy at) - 1.0) / at * hz)

let trend x at i =
(x / smoothI (lazy x) (lazy at) (x / (1.0+i*at)) - 1.0) / at

Although the integral functions are constructed in such a way that they
allow us to write differential equations declaratively without explicit indicating
the order of dependencies between the variables, sometimes it makes sense to
introduce an explicit order of relations. Aivika contains class type Reservoir
for this purpose.
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4.4 Defining Reservoirs

The Reservoir class type is just a wrapper built on the integ function. It has
internal fields in which the derivative is memorized. It allows us to refer to the
integral value before we define the derivative itself. If F# didn’t allow us to
define the variables recursively with help of the rec keyword then using this
class type would be the main way of defining the differential equations.

The following table shows the methods and properties on the Reservoir

type.

Table 4.7: Methods and Properties on the Reservoir type

Function and type Description

new: Creates a new reservoir with the specified
init:float -> initial value

Reservoir

new: Creates a new reservoir with the specified
init:Dynamics<float> -> initial value

Reservoir

member Inflow: Gets and sets the inflow
Dynamics<float>

member Outflow: Gets and sets the outflow
Dynamics<float>

member Value: Gets the integral value

Dynamics<float>

By default, the Inflow and Outflow properties return eta 0.0. The differ-
ence of these properties defines a derivative of the integral:

ax.Value = x.Inflow — x.0utflow

It is important that we can modify the flow properties at any time even after
we made a reference to the integral value somewhere in the equations. It leads
us to the following procedure.

1. At first we define constants.
2. At second step we create reservoirs initializing them with the constants.

3. Then we define auxiliary variables that depend on the values of integrals
contained in the reservoirs.
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4. Finally, we define the flows for the reservoirs, i.e. derivatives.

For instance, we can rewrite the model from section 4.1 using already the
reservoirs in accordance with our procedure.

> open Maritegra.Aivika
open Maritegra.Aivika.SD

> // 1. Define the constants
let ka = 1.0
let kb = 1.0

// 2. Create reservoirs
let ra = Reservoir (100.0)
let rb = Reservoir (0.0)
let rc = Reservoir (0.0)

// 3. Define the auxiliaries

let a = ra.Value
let b = rb.Value
let ¢ = rc.Value
let £ = ka * a
let g = kb * b

// 4. Define the derivatives
ra.0utflow <- £

rb.Inflow <- f

rb.0utflow <- g

rc.Inflow <- g

EIR )

val ka : float = 1.
val kb : float = 1.0
val ra : Reservoir
val rb : Reservoir

o

val rc : Reservoir

val a : Dynamics<float>
val b : Dynamics<float>
val ¢ : Dynamics<float>
val £ : Dynamics<float>
val g : Dynamics<float>

It defines the same model but written more imperatively, where we indicate
explicitly the dependencies between the variables. The stated above procedure
is useful when we cannot put all equations in one, probably huge, let rec
construct.
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The definition of the Reservoir class type is very straightforward, although
Aivika uses a slightly optimized version.

type Reservoir (init: Dynamics<float>) =

let mutable inflow = eta 0.0
let mutable outflow = eta 0.0

let diff = dynamics {
let! x1

let! x2
return (x1 - x2)

inflow

outflow

let value = integ (lazy diff) init
new (init: double) = Reservoir (eta init)

member x.Inflow

with get() = inflow and set (v) = inflow <- v
member x.0utflow

with get() = outflow and set (v) = outflow <- v
member x.Value = value

Aivika introduces other class types as well. For example, a Table class type
is used for working with table functions without which it is impossible to imagine
any complex model of System Dynamics.

4.5 Integrating Numerical Functions

The introduced above integration function integ can be applied to any time
varying numerical function defined somewhere in the ordinary F# code. The
idea is very simple. The key point is the map function of the Dynamics mod-
ule. This special function allows us to convert the ordinary F# function into a
computation of type Dynamics<float>. We can take the time built-in as the
source computation to be transformed.

> open Maritegra.Aivika
> open Maritegra.Aivika.SD;;

>let £t =1txxx2.0+t + 1.0
> let m = Dynamics.map f time

> let sum = integ (lazy m) (eta 0.0);;

val £ : float -> float
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val m : Dynamics<float>
val sum : Dynamics<float>

> let specs =
{ StartTime = 0.0; StopTime = 1.0; DT = 0.001;
Method = RungeKutta4; Randomness = SimpleRnd };;

val specs : Specs = {StartTime = 0.0;
StopTime = 1.0;
DT = 0.001;
Method = RungeKutta4;
Randomness = SimpleRnd;}

> Dynamics.runlLast sum specs;;
val it : float = 1.833333333

29

Frankly speaking, the integ function does more work than we need here.
This function actually returns a dynamic process keeping all its history in the
integration nodes under the hood. To get the final sum, we just take the last

value.

4.6 Using Table Functions

Given the array of pairs [|(1,91); (Z2,92);...; (Tn,yn)|] sorted by z;, we can
create an instance of the Table class type and then lookup the specified x
using either linear or step-wise interpolation. This class type has the following

methods and properties.

Table 4.8: Methods and Properties on the Table type

Function and type

Description

new:
(float * float) [] —>
Table

member Lookup:
x:Dynamics<float> ->
Dynamics<float>

member LookupStepwise:

x:Dynamics<float> ->
Dynamics<float>

member LookupF:
x:float -> float

Creates a new table using the specified

array of pairs [|(x1,y1); -5 (Tn, yn)|]
sorted by x;

Lookups x in the table using linear

interpolation

Lookups x in the table using step-wise
interpolation

Lookups x in the table using linear
interpolation
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member LookupStepwiseF: Lookups x in the table using step-wise
x:float -> float interpolation

To simplify the use of tables in the equations that are usually defined in a
functional style, the SD module of name space Maritegra.Aivika defines a set
of helper functions.

Table 4.9: Table Functions

Function and type Description

table: Creates a new table using the specified
(float * float) [1 -> array of pairs [|(z1,y1);..; (T, Yn)|]
Table sorted by x;

lookup: Lookups x in table t using linear
x:Dynamics<float> ->  interpolation

t:Table ->

Dynamics<float>

lookupStepwise: Lookups x in table t using step-wise
x:Dynamics<float> ->  interpolation

t:Table —>

Dynamics<float>

lookupF: Lookups x in table t using linear
x:float -> interpolation

t:Table —>

float

lookupStepwiseF: Lookups x in table t using step-wise
x:float -> interpolation

t:Table ->

float

Here is a small example of using the table function:

let Death_Fraction =
table [| (0.0, 5.161); (0.1, 5.161); (0.2, 5.161);
(0.3, 5.161); (0.4, 5.161); (0.5, 5.161);
(0.6, 5.118); (0.7, 5.247); (0.8, 5.849);
(0.9, 6.151); (1.0, 6.194) |]
|> lookup (Fish/Carrying_Capacity)
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We have already a rich enough arsenal of different functions to create rather
complicated models of System Dynamics. But in our practice we will need also
a tool to define unidirectional flows.

4.7 Representing Unidirectional Flows

A unidirectional flow can be represented as a computation that returns non-
negative floating point numbers. The SD module contains function nonnegative
for this purpose. This function is related to other two functions which are equiva-
lents of the standard max and min functions but for values of type Dynamics<’a>.

Table 4.10: Functions maxD, minD and nonnegative

Function and type Description
maxD: Represents an analog of the standard max
Dynamics<’a> -> function

Dynamics<’a> —>
Dynamics<’a>
when ’a: comparison

minD: Represents an analog of the standard min
Dynamics<’a> -> function

Dynamics<’a> ->

Dynamics<’a>

when ’a: comparison

nonnegative: Represents an optimized version of
x:Dynamics<float> -> expression maxD x (eta 0.0)
Dynamics<float>

Perhaps the best way to understand these functions is to look at that how
they could be defined using the computation expression syntax. Aivika actu-
ally implements them in a more efficient way, working with the computations
directly.

let maxD ml m2 = dynamics {
let! x1 = ml
let! x2 m2
return (max x1 x2)

let minD ml m2 = dynamics {
let! x1 = ml
let! x2 = m2
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return (min x1 x2)

Then we can apply the nonnegative function to return a uniflow. This
function is optimized as well. In section 4.8 we’ll see an example of using the
uniflows.

4.8 Simulating Fish Bank Model

The Fish Bank model is distributed along with other sample models as a part of
the installation package of Simtegra MapSys. This model is trying to establish
a relation between the amount of fish in the ocean, a number of ships with help
of which this fish is caught and the profit that the ship owners could realize.
The model diagram is shown on figure 4.1.

Perhaps the best way to define the mathematical equations for this model is
to provide their equivalent in Aivika but written with help of the recursive let
construct. It has a striking likeness to that how the same model is defined in
MapSys, which specialized language is more high level.

4.8.1 Approach Number 1. Declaring Model Equations

We can try to define the equations declaratively without explicit indicating
the order of dependencies?, which is invaluable for working with large models.
This approach works, because all loopbacks are defined lazily. This is why the
integral functions require delayed values for the arguments. What is important
is that the F# compiler itself detects whether the system of equations can be
integrated or cannot because of existence of circular relationships.

open Maritegra.Aivika
open Maritegra.Aivika.SD

let rec Annual_Profit = Profit
and Area = 100.0;
and Carrying_Capacity = 1000.0
and catch_per_Ship =
table [| (0.0, -0.048); (1.2, 10.875); (2.4, 17.194);
(3.6, 20.548); (4.8, 22.086); (6.0, 23.344);
(7.2, 23.903); (8.4, 24.462); (9.6, 24.882);
(10.8, 25.301); (12.0, 25.86) |]
|> lookup Density
and Death_Fraction =

4Unfortunately, at time of writing this book the recent version (1.9.9.9) of the F# compiler
generates an incorrect code for this model, which leads to raising the Nul1ReferenceException
exception during execution. The author hopes that this bug about which the F# team is well-
informed will be fixed soon. In case of need you can always try another approach described
in section 4.8.2
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table [| (0.0, 5.161); (0.1, 5.161); (0.2, 5.161);
(0.3, 5.161); (0.4, 5.161); (0.5, 5.161);
(0.6, 5.118); (0.7, 5.247); (0.8, 5.849);
(0.9, 6.151); (1.0, 6.194) |]

|> lookup (Fish/Carrying_Capacity)

Density = Fish/Area

Fish = integ (lazy (Fish_Hatch_Rate - Fish_Death_Rate

- Total_catch_per_Year))
(eta 1000.0)

Fish_Death_Rate = nonnegative (Fish*Death_Fraction)

Fish_Hatch_Rate = nonnegative (Fish*Hatch_Fraction)

Fish_Price = 20.0

Fraction_Invested = 0.2

Hatch_Fraction = 6.0

Operating_Cost = Ships*250.0

Profit = Revenue-Operating_Cost

Revenue = Total_catch_per_Year*Fish_Price

Ship_building_Rate =

nonnegative (Profit*Fraction_Invested/Ship_Cost)

Ship_Cost = 300.0

Ships = integ (lazy Ship_building Rate) (eta 10.0)

Total_catch_per_Year = nonnegative (Ships*catch_per_Ship)

Total_Profit = integ (lazy Annual_Profit) (eta 0.0)

Please pay attention to that how the stocks are defined with help of the
integ function and that how the unidirectional flows are defined with help of
function nonnegative. The model also defines two table functions.

Now we can simulate the whole model and return results for each of the
variables. Let’s suppose that we are interested in the amount of fish, the number
of ships and the value of the annual profit. To interpret the results, we also need
to know the simulation time. The corresponded compound dynamic process can
be defined in the following way:

let

s = Dynamics.ofArray [| time; Fish; Annual Profit; Ships |]

Now we can run the simulation for any specified specs and receive the results.
But before it I'll show how the same model can be defined with help of reservoirs.

4.8.2 Approach Number 2. Ordering Model Equations

The reservoirs described in section 4.4, page 26, allows us to write differential
equations in a few steps without explicit using recursion. The drawback of this
approach is that we have to place the equations in right order. Now they can
be rewritten in the following way for our example.

open Maritegra.Aivika
open Maritegra.Aivika.SD
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// 1. Define constants

let Area = 100.0;

let Carrying_Capacity = 1000.0
let Fish_Price = 20.0
let Fraction_Invested = 0.2

let Hatch_Fraction = 6.0
let Ship_Cost = 300.0

// 2. Create reservoirs

let Fish_R = Reservoir (1000.0)
let Ships_R = Reservoir (10.0)
let Total_Profit_R = Reservoir (0.0)

let Fish = Fish_R.Value
let Ships = Ships_R.Value
let Total_Profit = Total_Profit_R.Value

// 3. Define auxiliaries

let Density = Fish/Area
let catch_per_Ship =
table [l (0.0, -0.048); (1.2, 10.875); (2.4, 17.194);
(3.6, 20.548); (4.8, 22.086); (6.0, 23.344);
(7.2, 23.903); (8.4, 24.462); (9.6, 24.882);
(10.8, 25.301); (12.0, 25.86) |1
|> lookup Density
let Death_Fraction =
table [| (0.0, 5.161); (0.1, 5.161); (0.2, 5.161);
(0.3, 5.161); (0.4, 5.161); (0.5, 5.161);
(0.6, 5.118); (0.7, 5.247); (0.8, 5.849);
(0.9, 6.151); (1.0, 6.194) |]
> lookup (Fish/Carrying_Capacity)
let Fish_Death_Rate = nonnegative (Fish*Death_Fraction)
let Fish_Hatch_Rate = nonnegative (Fish*Hatch_Fraction)
let Operating_Cost = Ships*250.0
let Total_catch_per_Year = nonnegative (Ships*catch_per_Ship)
let Revenue = Total_catch_per_Year*Fish_Price
let Profit = Revenue-Operating_Cost
let Annual_Profit = Profit
let Ship_building Rate =
nonnegative (Profit*Fraction_Invested/Ship_Cost)

// 4. Define derivatives
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Fish_R.Inflow <-

Fish_Hatch_Rate - Fish_Death_Rate - Total_catch_per_Year
Ships_R.Inflow <- Ship_building_Rate
Total_Profit_R.Inflow <- Annual_Profit

Also we’ll define the same output variables.
let s = Dynamics.ofArray [| time; Fish; Annual_ Profit; Ships |]

Finally, we can proceed to the simulation and receive a sequence of output
arrays for the specified variables.

4.8.3 Receiving Results of Simulation

Let’s specify the same specs as in the model distributed together with Simtegra
MapSys. The start time will be 0.0, stop time will be 13.0, the integration time
step will be 0.02. We'll apply the 4th order Runge-Kutta method and select a
simple pseudo-random generator. We have to define the latter even if we are
not going to use random functions.

let specs = {

StartTime=0.0; StopTime=13.0; DT=0.02;
Method=RungeKutta4; Randomness=SimpleRnd

Now if we'll try to start the simulation then we’ll receive a reply almost
immediately. Here Aivika returns a sequence of values, i.e. an enumeration of
the values which are yet to be calculated.

> let results = Dynamics.run s specs;;
val results : seq<float []>

It means that the simulation is actually not started. To run it finally, we have
to start enumerating the elements of this sequence. The simulation can allocate
a memory for storing its intermediate results. This memory will be released
after we request the last element of the sequence. If we’ll try to enumerate
the elements of the same sequence again, then a new simulation will be run in
response. In this example we don’t use random functions, which are described
in section 4.9, page 38. Therefore we’ll always receive the same results for each
new simulation. But if we used them then the results could be different. In other
words each new enumeration of the sequence with results of the simulation may
return different data.
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> results |> Seq.take 10 |> Seq.tolList;;

val it : float [] list =
[[10.0; 1000.0; 2504.333333; 10.0/];
[10.02; 991.1654131; 2506.509107; 10.03340558]];
[10.04; 982.4285895; 2508.719677; 10.0668404|];
[10.06; 973.7869922; 2510.963999; 10.10030492|];
[10.08; 965.2381583; 2513.241053; 10.13379958]|1];
[10.1; 956.779697; 2515.544385; 10.16732481]1];
[10.12; 948.4092957; 2517.869661; 10.20088087|];
[10.14; 940.1247; 2520.22477; 10.23446813]|];
[10.16; 931.9237158; 2522.608781; 10.26808699|17;
[10.18; 923.8042107; 2525.020788; 10.30173782[11]

Actually, such a sequence is not a single way or receiving the results. Using
the computation expression syntax, you can create computations of any com-
plexity. It also means that you can save the results of the simulation using
these expressions. Section 8.3, page 95, covers this topic in more detail. But
you should remember that such a technique is not safe and that it is error-prone
especially if you are going to run parallel simulations as described in section 8.1,
page 95. The most safe and robust way is to pass the results directly through
the run function or their counterparts runLast and runWhile, although it may
have some overheads.

4.8.4 Saving Results in CSV File

The results can be saved in the CSV file to analyze. The following utility
function can be helpful here.

open System
open System.I0
open System.Text

let saveCSV (results: #seq<float []>)
(fields: (string * int) list)
(filename: string) =

let encoding = UTF8Encoding (true) :> Encoding

use stream = new FileStream (filename, FileMode.Create)
use file = new StreamWriter (stream, encoding)

let s = fields
> List.map (fun (name, _) -> name)

|> List.reduce (fun si1 s2 -> sl + "\t" + s2)

file.WriteLine (s)
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for r in results do

let s = fields
[> List.map (fun (_, id) -> sprintf "J%f" r.[id])
|> List.reduce (fun s1 s2 -> sl + "\t" + s2)

file.WriteLine (s)

This small function takes the results, a schema that describes the fields we
desire to see in the file and the file name. The schema is a list of pairs consisting
of the field name and its index in the resulting array. The function traverses
the results and save those of them which were indicated in the schema.

For example, to save the output data in the FishBank.csv file, we can enter
in the F# Interactive:

> let fs = [("time", 0); ("Fish", 1); ("Annual_Profit", 2);
("Ships", 3)1;;

val fs : (string * int) list =
[("time", 0); ("Fish", 1); ("Annual_Profit", 2); ("Ships", 3)]

> saveCSV results fs "FishBank.csv";;
val it : unit = ()

This model was deterministic but Aivika can simulate stochastic models as
well. Please read the next section to know how you can use the built-in random
functions and create your own.

4.9 Using Random Functions

Aivika provides a set of the predefined random functions. So, there are genera-
tors for the uniform, normal, binomial and Poisson random values. Like many
other software tools specialized in System Dynamics Aivika represents basic ran-
dom functions as discrete processes that return new random numbers at each
iteration step, i.e. as piecewise constant functions varying in the primary inte-
gration nodes. You can find more information about the discrete processes in
section 4.10, page 42.
The built-in random functions are collected in the table below.

Table 4.11: Random Functions

Function and type Description

random: Returns the uniform random numbers between
a:Dynamics<float> -> aandb



b:Dynamics<float> ->
Dynamics<float>

randomS:

s:int ->
a:Dynamics<float> ->
b:Dynamics<float> ->
Dynamics<float>

normal:
p:Dynamics<float> ->
v:Dynamics<float> ->
Dynamics<float>

normalS:

s:int ->
f:Dynamics<float> ->
v:Dynamics<float> ->
Dynamics<float>

binomial:
p:Dynamics<float> ->
n:Dynamics<int> ->
Dynamics<int>

binomialS:

s:int >
p:Dynamics<float> ->
n:Dynamics<int> ->
Dynamics<int>

poisson:
p:Dynamics<float> ->
Dynamics<int>

poissonS:

s:int ->
p:Dynamics<float> ->
Dynamics<int>

exprnd:
o :Dynamics<float> ->
Dynamics<int>

exprndS:
s:int >
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Returns the uniform random numbers between
a and b with constant seed s

Returns the normal random numbers with
mean g and variance v

Returns the normal random numbers with
mean p, variance v and constant seed s

Returns the binomial random numbers on
n trials of probability p

Returns the binomial random numbers on
n trials of probability p with constant
seed s

Returns the Poisson random numbers with
mean p

Returns the Poisson random numbers with
mean p and constant seed s

Returns the exponential random numbers
with mean g

Returns the exponential random numbers
with mean p and constant seed s



40 CHAPTER 4. SYSTEM DYNAMICS

w:Dynamics<float> ->
Dynamics<int>

Each function has its counterpart with suffix S in the name. Such a coun-
terpart takes a constant seed as the first parameter. To replicate the stream of
random numbers, you should define a non-zero integer seed. Also some argu-
ments are computations of type Dynamics. It means that they can vary in time.
It allows us to build new computations with rather sophisticated behavior.

If we had no function exprnd then we could define it in the following way:

let exprnd (mu: Dynamics<float>) =
- log (random (eta 0.0) (eta 1.0)) * mu

There is a special function randomizer with help of which we can also create
new random functions. It uses type Generator representing any function that
possibly creates some side-effect and then returns a floating point number.

type Generator = unit -> float

The function signature and description are provided below. All the stated
above random functions are actually implemented based on this function. The
corresponded definitions are simple enough. You can also create your own ran-
dom functions this way.

Table 4.12: Randomizer Function

Function and type Description
randomizer: Returns random numbers using
s:int option -> the specified seed s, generator

tr: (Generator -> Generator) -> transform tr and generating
m:Dynamics<Generator -> ’a> -> processm
Dynamics<’a>

Aivika initially creates the uniform random number generator that returns
floating point numbers between 0.0 and 1.0. This generator is transformed
by parameter tr. It happens before the simulation is started. Then during
a computation this transformed generator is passed to process m that already
returns random numbers which become a result. If the constant seed is not
specified than we should pass None to parameter s.

For example, the built-in randomS is defined in the following way.

let randomS s (a: Dynamics<float>) (b: Dynamics<float>) =
dynamics {
let! a’ = a
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let! b’ = Db
return (fun g -> a’ + (b’ - a’) * g ())
} |> randomizer (Some s) id

To implement the normalS function, we have to define the generator trans-
form first. It takes the uniform random number generator and returns the
normal random number generator with mean 0.0 and variance 1.0.

let normalGenerator (g: Generator) =

ref 0.0
ref false

let next
let flag

in fun OO ->
if !flag then

flag := false
'next

else
let mutable xil =

let mutable xi2
let mutable psi

]
o O O
o O O

while (psi >= 1.0) || (psi = 0.0) do

xil <-2.0*xg () - 1.0
xi2 <- 2.0 x g O - 1.0
psi <- xil * xil + xi2 * xi2

psi <- sqrt (- 2.0 * (log psi) / psi)

flag := true
next := xi2 * psi

xil * psi
Then the random function itself can be defined like this:

let normalS s (mu: Dynamics<float>) (sigma: Dynamics<float>) =
dynamics {
let! mu’ = mu
let! sigma’ = sigma
return (fun g -> mu’ + sigma’ * g ()
} |> randomizer (Some s) normalGenerator
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The random functions are not only discrete functions defined in the standard
library of Aivika. Some of them are described in the next sections as well.

4.10 Introducing Discrete Processes and Func-
tions

In Aivika the discrete functions are a particular case of more general discrete
processes that may return any values during the simulation, not only numbers.
In its turn the discrete process is such a computation that returns a value that
doesn’t change except of the integration intervals regardless of the integration
method used.

4.10.1 Creating Discrete Processes

There are two very important functions that can be applied to any computa-
tion in the Dynamics workflow, that is a value of generic type Dynamics<’a>.
The both functions return discrete processes. The functions are defined in two
modules SD and Dynamics.

Table 4.13: Basic Discrete Functions

Function and type Description

init: Returns the initial value
Dynamics<’a> ->
Dynamics<’a>

discrete: Returns a discrete estimate
Dynamics<’a> —>
Dynamics<’a>

The first function is useful if we need to know the initial value of the speci-
fied computation. Then only one value is returned for all integration intervals.
Therefore the resulting computation is a discrete process according to the defi-
nition.

The second function is a more subtle thing. If the input computation isn’t
discrete then the resulting one is a discrete estimate for the former. It com-
putes values of the input computation exactly in the integration nodes and then
extends these values to the corresponded integration intervals, which makes
obviously the result discrete.

In fact, we can request for the result of computation at any time ¢ and
this time can differ from the integration nodes. Moreover, the Runge-Kutta
method complicates the matter. All this should be taken into account. What
you must know is that the discrete function is very cheap and it returns a
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rather accurate discrete estimate for the input computation. The function is
efficient and it is often applied in Aivika itself. Also you can combine this
function with memoization to order the calculations creating strictly sequential
processes. You can find more details in section 8.2, page 95.

4.10.2 Miscellaneous Discrete Functions

Like other simulation tools Aivika provides the pulse and step functions. These
functions are discrete.

Table 4.14: Miscellaneous Discrete Functions

Function and type Description

step: Returns 0 until time st and then returns h
h:Dynamics<float> ->
st:Dynamics<float> ->

Dynamics<float>

pulse: Returns the pulse of height 1 starting at
st:Dynamics<float> -> time st with duration w
w:Dynamics<float> ->

Dynamics<float>

pulseP: Returns the pulse of height 1 starting at
st:Dynamics<float> -> time st with duration w and period p

w:Dynamics<float> ->
p:Dynamics<float> ->
Dynamics<float>

ramp: Returns 0 until time st and then slopes
slope:Dynamics<float> -> until time e and then holds slope
st:Dynamics<float> ->

e:Dynamics<float> ->

Dynamics<float>

These functions can be easily defined using the computation expression syn-
tax. For example, the step function is equivalent to the following one.

let step h st =
dynamics {

let! st’ = st
let! £’ = time
let! dt’ = dt

if st’> < t’ + dt’ / 2.0 then
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return! h
else
return 0.0
} |> discrete

Please note how the result becomes discrete. In a similar way you can define
your own discrete functions. You can define something using the dynamics
builder and then pass the result to function discrete that already creates a
discrete process.

4.10.3 Delaying Computations

The discrete processes have one excellent feature. They can be memoized during
the simulation. It allows us to refer to their past values. Aivika contains two
useful functions that delay the computations. Only we should remember that
the result is discrete in the both cases.

Table 4.15: Delay Functions

Function and type Description
delay: Returns a delayed discrete value of x using
x:Dynamics<’a> -> a lag time of d

d:Dynamics<float> ->
Dynamics<’a>

delayI: Returns a delayed discrete value of x using
x:Lazy<Dynamics<’a>> -> a lag time of d and initial value i
d:Dynamics<float> ->

i:Dynamics<’a> ->

Dynamics<’a>

Please note that the both functions are generic, that is they will work with
any computation in the Dynamics workflow. Also the first argument of the
second function was intentionally made delayed, which allows us to use this
function in the recursive let construct as it was in case of the integrals.

let rec fibs =
delayI (lazy fibs) (2.0 * dt) (eta 0.0) +
delayIl (lazy fibs) dt (eta 1.0)

The delay functions can also be modeled with help of more heavy-weight
conveyors which are described in the next section.
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4.11 Using Discrete Stocks

4.11.1 Using Conveyors
4.11.2 Using Ovens
4.11.3 Using Queues

4.12 Working with Arrays

TODO: Estimating Mean Value and Variance.
TODO: An example with smoothNI.

4.13 Calling External Functions within Simula-
tion

An ability to call external functions within the simulation is inherited in work-
flow Dynamics. We can use the computation expression syntax for this purpose.
But we must understand that the computation returns multiple values and the
order in which these values are calculated and time at which it happens is un-
defined in general case.

4.13.1 Calling Pure Functions

If your function is pure, i.e. has no assignment nor any other side-effect, then
there is no problem. The result of such a function depends on nothing but the
arguments values.

open Maritegra.Aivika
open Maritegra.Aivika.SD

let rho (x1, y1) (%2, y2) =
let dx: float = x2 - x1
let dy: float = y2 - y1
in sqrt (dx*dx - dyxdy)

let rhoD ml m2 = dynamics {
let! pl = ml
let! p2 = m2
return (rho pl p2)

In this example function rho is pure. Therefore we can use it within any
computation expression. The result will always be predictable in whatever sim-
ulation we will use this function.
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4.13.2 Sequencing Function Calls

It must be admitted that many practical functions are not pure. Fortunately,
we can use such functions within the simulation too. The Dynamics module
contains three helper functions memo, memoO and memoGenerator that introduce
a sequential order of calculations for the specified computation of type Dynamics
These functions are described in section 8.2, page 95, of this book.

The following example returns a computation of Fibonacci numbers:

// a function with side-effect!
let fib =

let a = ref O

let b = ref 1

in fun () ->

let va = la
let vb = b
a := vb
b :=va + vb
va

let fibD =

dynamics {
return (fib ()
}

|> Dynamics.memoO discrete

Here the generator of numbers, function £ib, has a side-effect. But dynamic
process £ibD always returns numbers sequentially. The applied memoO function
gives a guarantee that the calculations will be called one by one for the integra-
tion nodes in a strongly sequential order®. But if we’ll try to run the simulation
two times then we’ll receive different results.

> let specs = { StartTime=0.0;
StopTime=0.2;
DT=0.01;
Method=RungeKutta4;
Randomness=SimpleRnd };;

val specs : Specs = {StartTime = 0.0;
StopTime = 0.2;
DT = 0.01;
Method = RungeKutta4;
Randomness = SimpleRnd;}

> Dynamics.run fibD specs |> Seq.tolist;;

5This rule works even if the run function is replaced with runLast.
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val it : int list =
[0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233;
377; 610; 987; 1597; 2584; 4181; 6765]

> Dynamics.run fibD specs |> Seq.tolist;;

val it : int list =
[10946; 17711; 28657; 46368; 75025; 121393; 196418;
317811; 514229; 832040; 1346269; 2178309; 3524578;
5702887; 9227465; 14930352; 24157817; 39088169;
63245986; 102334155; 165580141]

To force the £ibD process to return the same results, we can reset the gen-
erator at the initial time of simulation. In this case using a class type can be a
better choice.

type Fib2 () =

let mutable a = 0
let mutable b =1
member x.Reset () =
a<-0
b <-1

member x.Next () =
let va = a
let vb = b
a <- vb
b <- va + vb
va

let f£ib2D
let g = Fib2 ()
dynamics {
let! tO starttime
let! t = time
if t = t0 then
g.Reset ()
return (g.Next ())

}

|> Dynamics.memoO discrete

Now we see that the modified version of the dynamic process returns numbers
starting from zero for the second simulation too.

> Dynamics.run fib2D specs |> Seq.tolList;;

val it : int list =
[0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233;
377; 610; 987; 1597; 2584; 4181; 6765]
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> Dynamics.run fib2D specs |> Seq.tolist;;

val it : int list =
[0; 1; 1; 2; 3; 5; 8; 13; 21; 34; 55; 89; 144; 233;
377; 610; 987; 1597; 2584; 4181; 6765]

This approach is sufficient in many situations, although it has one weakness.
It would not be thread-safe to use the fib2D computation if a few simulations
were launched simultaneously, for different simulations would modify one shared
variable g. As we can see, impure functions may cause so many problems. But
even for this case there is a solution. So, using the DynamicsCont workflow
described further, we can create a discrete process that will generate safely the
Fibonacci numbers. Please see section 6.8, page 73, for more details.



Chapter 5

DynamicsCont Workflow
Basics

In addition to the Dynamics workflow Aivika has also the DynamicsCont work-
flow. The latter is a flexible bridge between the process-oriented DES and other
modeling paradigms supported by Aivika. In many senses the DynamicsCont
workflow is similar to Dynamics. Each of them means some delayed computa-
tion, which is started during a simulation. The both workflows allow you to
write complicated F# code using the computation expression syntax and define
rather sophisticated computations. Also you can call external .NET functions
within your computations, the feature which is difficult to overestimate.

Nevertheless, there is an important difference between these two workflows.
A computation in the DynamicsCont workflow is like an operating system pro-
cess or thread. Its control flow can be suspended at any time and then resumed
later. This is a key point for the process-oriented simulation.

What allows us to connect the process-oriented simulation to other parts of
the hybrid model, for example, written with help of differential equations, comes
from the functional programming. I will describe it in detail later in section 9,
page 97. What you must know now is that any computation in the Dynamics
workflow can be a part of computation in the DynamicsCont workflow. For
example, it allows us to use any variables and functions of System Dynamics in
the process-oriented simulation. In the functional programming this mechanism
is called lifting. At the same time there is a connection in opposite direction. We
can convert the process-oriented simulation into a computation in the Dynamics
workflow. All this allows us to truly create hybrid models.

5.1 Using Computation Expression Syntax

The DynamicsCont workflow builder is called dynamicscont. It supports all
keywords that the builder can. We can put almost any ordinary F# code inside
of a computation expression as it was in case of the Dynamics workflow. If you
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worked with the latter or the standard async workflow then you will be able to
use the dynamicscont workflow as well. The main idea is the same.

let next i = dynamicscont {
printfn "i = %i" i
return (i + 1)

3

let count n = dynamicscont {
let i = ref 1
while !i <= n do
let! j = next !'i
iz::=7

5.2 Lifting Computation

To build hybrid models, we must know how to combine computations in the
Dynamics workflow with computations in the DynamicsCont workflow. The lift
operation allows us to transform more simple computation into more complex.
Here the Dynamics workflow is more simple which the DynamicsCont workflow
is based on. The corresponded lift function is defined in the DynamicsCont
module.

Table 5.1: Lift Function

Function and type Description

DynamicsCont.lift: Lifts the computation
Dynamics<’a> -> DynamicsCont<’a>

I will often use this function in the process-oriented models. For example,
to know the current simulation time, I have to lift the time built-in. Similarly,
to use the current value of integral A in the the process-oriented simulation, I
can apply the 1ift function to A. This function is indeed very useful.

5.3 Running Computation

The run function is important for every computation. This is what starts the
computation and then allows us to get its result. The Dynamics workflow is
more simple and its run function starts the computation immediately. The
DynamicsCont workflow is not that case. Its run function reduces a computation
in the DynamicsCont workflow to some computation in the Dynamics workflow.
Also the function takes as an argument another function that will process the
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result of the source computation.

Table 5.2: Run Function

Function and type Description

DynamicsCont.run: Runs the computation which result
DynamicsCont<’a> ->  will be processed by function f
f:(’a -> unit) ->

Dynamics<unit>

Aivika is built in such a way that in most cases you won’t need to use
this run function directly. Also you can notice that this function is somewhere
similar to the 1ift function. Indeed, you can think of the run function as an
up-cast conversion, while the 1ift function resembles slightly the down-cast
conversion for the class type hierarchy, although this analogy is very weak. The
run and lift functions are traits of the functional programming which is quite
different from the object-oriented programming. If you are familiar with the
functional programming then you might notice that the DynamicsCont workflow
is a monad transformer parameterized by the Dynamics monad. But to use the
both workflows successfully in your simulation model, it is unnecessary to be an
expert in the functional programming.
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Chapter 6

Discrete Event Simulation

(DES)

In chapter 4 we considered functions and methods that allow us to simulate mod-
els of System Dynamics (SD). Such models mainly describe continuous variables,
although there are some exceptions. For example, the SD model may contain a
discrete conveyor that changes incrementally. Discrete Event Simulation (DES)
involves simulating such variables that change in discrete steps. Then an event
implies some variable change.

Aivika supports three main paradigms of DES. You can create activity-
oriented, event-oriented and process-oriented models. Moreover, you can com-
bine all these three paradigms together with System Dynamics in one hybrid
model including the agent-based modeling described further in chapter 7. The
key to success consists in using two workflows Dynamics and DynamicsCont.

6.1 Applying Activity-oriented Paradigm

Under the activity-oriented paradigm, we break time into tiny increments. At
each time point, we look around at all the activities and check for the possible
occurrence of events. Sometimes this scheme is called time-driven.

The time points are integration nodes in our case. To simulate an activity,
we’ll create a computation in the Dynamics workflow. Using the computation
expression syntax, we can define a rather complicated behavior. To get the cur-
rent simulation time, we’ll apply the let! construct inside of the computation.
The code of the computation itself will be executed sequentially for each time
point, i.e. the integration node.

I'll illustrate the approach on the following sample model [1].

There are two machines, which sometimes break down. Up time is
exponentially distributed with mean 1.0, and repair time is expo-
nentially distributed with mean 0.5. There are two repairpersons,
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so the two machines can be repaired simultaneously if they are down
at the same time. Output is long-run proportion of up time. Should
get value of about 0.66.

Here is one of possible solutions.
open System

open Maritegra.Aivika
open Maritegra.Aivika.SD

let specs = {

StartTime=0.0; StopTime=10000.0; DT=0.05;
Method=RungeKutta4; Randomness=SimpleRnd

// reciprocal of mean up time

let upRate = 1.0 / 1.0
=1.0/ 0.5 // reciprocal of mean repair time

let repairRate
let mutable totalUpTime = 0.0 // total up time for all machines

let expovariate =
let rnd = new Random ()
in fun lambda ->
- log (rnd.NextDouble ()) / lambda

let machine id =

let upTimeNum = ref -1
let repairTimeNum = ref -1
let startUpTime = ref 0.0

dynamics {

if !upTimeNum > O then
decr upTimeNum

if !upTimeNum = O then
upTimeNum := -1

// the machine is broken
let! finishUpTime = time
let! dt’ = dt
totalUpTime <- totalUpTime
+ (finishUpTime - !startUpTime)
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repairTimeNum := int <|
(expovariate repairRate) / dt’

elif 'upTimeNum < O then

if !repairTimeNum > O then
decr repairTimeNum

if !'repairTimeNum = O then
repairTimeNum := -1

// the machine is repaired

let! t’ = time

let! dt’ = dt

startUpTime := t’

upTimeNum := int <| (expovariate upRate) / dt’

elif !repairTimeNum < O then
// initialization
let! t’ = time
let! dt’ = dt
startUpTime := t’
upTimeNum := int <| (expovariate upRate) / dt’

} |> Dynamics.memoO discrete

let machinel = machine 1
let machine2 = machine 2

let system = dynamics {

do! machinel // process machine 1
do! machine2 // process machine 2
return! (totalUpTime / (2.0 * stoptime))
}
[<EntryPoint>]

let main args =
let result = Dynamics.runlast system specs
printfn "Long-run proportion of up time = %f" result

0
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The mean up time is 1.0 and the mean repair time is 0.5. Therefore it is
sufficient to take DT = 0.05. We have to generate such values for the up time and
repair time so that they will be multiple of DT. Here we use counters of iterations
that should pass before the machine is switched to another state. The counters
have suffix Num in the name.

let! dt’ = dt
repairTimeNum := int <| (expovariate repairRate) / dt’

To get DT, we apply the let! construct to built-in computation dt that
knows how to calculate DT defined in the simulation specs.

let specs = {

StartTime=0.0; StopTime=10000.0; DT=0.05;
Method=RungeKutta4; Randomness=SimpleRnd

In general, the order of calculations is not defined for the computation in the
Dynamics workflow. Now we want to create a dynamic process (in mathematical
sense) that calculates values () of type unit in the time points and also generates
some side-effect. We are mostly interested in this side-effect that leads to an
update of the totalUpTime variable. We need such calculations that would be
performed strongly sequentially in the time points. Here we apply the memoO
function described further in section 8.2, page 95.

dynamics {

// thanks to the memoO function,
// this code we’ll be executed sequentially
// in the time points, i.e. the integration nodes

} |> Dynamics.memoO discrete

Then we create two machines machinel and machine2, each of them is a
computation of type Dynamics<unit>. To involve simulating the both machines,
in the main model we apply the do! construct that binds computations.

let system = dynamics {

do! machinel // process machine 1
do! machine2 // process machine 2
return! (totalUpTime / (2.0 * stoptime))

The rest part of the code starts a simulation and then outputs the result.
We are interested only in the last value. Please note that without function
memoO the machines wouldn’t actually be simulated. Aivika would launch their
computations only once for the last time point.



6.2. USING EVENT QUEUE o7

let result = Dynamics.runlast system specs
printfn "Long-run proportion of up time = %f" result

You might notice that this approach of simulating two machines is not effi-
cient at all. There are too many time-wasting iterations which we have to tra-
verse waiting for the occurrence of events and decreasing our counters upTimeNum
and repairTimeNum. Fortunately, there are more efficient approaches. Two of
them are described further. You will see how the same task can be solved in
significantly more efficient ways.

6.2 Using Event Queue

All other simulation paradigms described further in the book, including the
agent-based modeling, are implemented on top of the event queue represented
in Aivika by class type Env. Internally, Env is based on an efficient heap-based
priority queue. An object value of this class type allows us to dispatch events,
which are activated then at the specified time.

It may seem ironical but the events are just computations in the Dynamics
workflow. If you want to transfer some data with the event then you can use a
closure. It is so natural for the functional programming language. You will see
an example in section 6.3, page 58.

The Env class type has the following methods.

Table 6.1: Methods on the Env type

Function and type Description

new: Creates a new event queue
unit -> Env

member Dispatch: Activates event c at time t
t:Dynamics<float> *

c:Dynamics<unit> ->

Dynamics<unit>

member DispatchD: Activates event c at time t
t:Dynamics<float> *

c:Dynamics<unit -> unit> ->

Dynamics<unit>

member Run: Runs the event queue
Dynamics<unit>

The dispatching methods activate the events at the specified time. It hap-
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pens only if the event queue itself is involved in the simulation. To involve, we
have to use the Run method and bind its result with the main computation like
this.

let e = Env ()
let system = dynamics {

do! e.Run // run the event queue

The events have either type Dynamics<unit> or Dynamics<unit -> unit>.
The latter is needed for the DynamicsCont workflow with help of which the
process-oriented paradigm is implemented in Aivika. Every event is a com-
putation. When its activation time comes, event’s computation is involved in
the main simulation. It provides us with fantastic facilities of building hybrid
models.

The activation time can be any except for one requirement. The final value
must be greater than or equaled to the current simulation time. In other words,
the event queue cannot dispatch events back to the past. But the time value
can differ from the integration nodes defined by such methods as Runge-Kutta.
The time value can be arbitrary. It allows us to build exact simulation models.
What is important is that all this is well integrated with module of System
Dynamics. The Dynamics workflow performs all the hard work.

The activation time is also a computation of type Dynamics<float>. It was
done for generality and for easy using built-ins time, dt and starttime. If you
want to pass the specified time value then you can always use the eta function
that returns a new computation.

The both dispatching methods Dispatch and DispatchD return computa-
tions of type Dynamics<unit>. You must involve these computations in the
simulation using the do! construct as it will be shown in the next section.
which demonstrates how you can work directly with these methods of the event
queue.

6.3 Applying Event-oriented Paradigm

Under the event-oriented paradigm, we put all pending events in the priority
queue, where the first event has the minimal activation time. Then we se-
quentially activate the events removing them from the queue. During such an
activation we can add new events. This scheme is called event-driven.

To apply the scheme, we use the Env class type that implements the event
queue. I'll illustrate the approach for the same sample model which was con-
sidered in section 6.1, page 53. Please pay attention to that how I transfer the
event data through the closure.
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#nowarn "40"
open System

open Maritegra.Aivika
open Maritegra.Aivika.SD

let specs = {

StartTime=0.0; StopTime=10000.0; DT=0.05;
Method=RungeKutta4; Randomness=SimpleRnd

let upRate = 1.0 / 1.0 // reciprocal of mean up time
let repairRate = 1.0 / 0.5 // reciprocal of mean repair time

let mutable totalUpTime = 0.0 // total up time for all machines

let expovariate =
let rnd = new Random ()
in fun lambda ->
- log (rnd.NextDouble ()) / lambda

let machine id (e: Env) =

let rec broken startUpTime =
dynamics {

// the machine is broken
let! finishUpTime = time
totalUpTime <- totalUpTime
+ (finishUpTime - startUpTime)
let repairTime = expovariate repairRate

// register a new event
do! e.Dispatch (eta (finishUpTime + repairTime),
repaired)
}
and repaired =
dynamics {

// the machine is repaired
let! startUpTime = time

let upTime = expovariate upRate

// register a new event
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do! e.Dispatch (eta (startUpTime + upTime),
broken startUpTime) // closure

}
and started =
e.Dispatch (starttime, repaired)

in Dynamics.once started
let e = Env ()

let machinel = machine 1 e
let machine2 = machine 2 e

let starter =
dynamics {
do! machinel
do! machine2
} |> Dynamics.once

let system = dynamics {

do! starter // start the machines
do! e.Run // run the event queue

return! (totalUpTime / (2.0 * stoptime))
}

[<EntryPoint>]
let main args =

let result = Dynamics.runlast system specs
printfn "Long-run proportion of up time = %f" result
0

Although we defined the same simulation specs as it was in case of the
activity-oriented simulation, parameter DT is not actually used here by Aivika.
The event queue doesn’t rely on the integration nodes. It has its own order of
calculations concerted with the simulation in which the event queue is involved
(through its Run method). Therefore this model is more efficient.

Here the events are created by local function broken and value repaired.
The latter is just a computation that has type Dynamics<unit>. The former is
a function that accepts one parameter. Given the start up time, this function
creates a computation of type Dynamics<unit> too. It is called a closure. In
such a way we can transfer any data we want.
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// register a new event
do! e.Dispatch (eta (startUpTime + upTime),
broken startUpTime) // closure

The local value started is a computation of type Dynamics<unit> and
it registers the very first event which must be activated at the start time of
simulation. We want this computation be actuated only once. We can achieve
such a behavior with help of the once function of module Dynamics.

Table 6.2: Once Function

Function and type Description

Dynamics.once: Actuates the computation only once
Dynamics<unit> ->

Dynamics<unit>

Since the both machines are also computations of type Dynamics<unit>, we
can apply the once function to them to create a new computation that would
launch the machines.

let e = Env ()

let machinel machine 1 e
let machine2 = machine 2 e

let starter =
dynamics {
do! machinel
do! machine2
} |> Dynamics.once

Now value starter is an initial point for the machines. But this computation
must be involved in the main simulation through the do! construct that binds
computations together. Please note that this binding must precede the running
of the event queue.

let system = dynamics {

do! starter // start the machines
do! e.Run // run the event queue

return! (totalUpTime / (2.0 * stoptime))

The rest part of the model is the same as before.
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This model is more simple and clear than its activity-oriented counterpart.
Also it is more precise as the up time and repair time are not rounded to be
multiple of DT. What is also important is that the new model has a higher speed
of simulation. But there is also another efficient approach. Moreover, that
approach allows us to write even more concise models. I will show how we can
rewrite this sample model in section 6.5, page 64.

6.4 Introducing Control Processes

In section 4.10, page 42, I told you about discrete processes. They came from
mathematics. They are a generalization of function that varies in time. But in
this section I would like to concern quite different processes. I will call them
control processes to distinguish from the mathematical ones. Any control process
is associated with some control flow. It is like an operating system thread or
process. It is very important that the control process can be suspended at any
time and then resumed later. We will use such processes to model simulation
activities and I will show how the processes themselves can be easily modeled
by the DynamicsCont workflow, which was described briefly in chapter 5.

There is an abstract class type Process that represents a control process.
The type has the following methods and properties. The most part of them
return computations. You know how to involve them in the main simulation
with help of keywords do!, let! and use! that must be applied inside of the
corresponded computation expression. Without it the computations will have
no any effect.

Table 6.3: Methods and Properties on the Process type

Function and type Description

new: Creates a new control process

Env -> Process using the specified event queue
member Env: Returns the event queue which

Env the process is associated with
member Hold: Suspends the current control process
t:<float> -> for the specified amount of time t
DynamicsCont<unit>

member HoldD: Suspends the current control process
t:Dynamics<float> -> for the specified amount of time t
DynamicsCont<unit>

abstract Activate: Activates this control process

DynamicsCont<unit>



6.4. INTRODUCING CONTROL PROCESSES 63

member IsPassivated: Checks whether this control process
DynamicsCont<bool> is passivated

member Passivate: Puts the current control process to sleep until
DynamicsCont<unit> it will be awakened by some other process
member Reactivate: Awakens this control process

DynamicsCont<unit>

member Start: Starts this control process at time t
t:float ->
Dynamics<unit>

member StartD: Starts this control process at time t
t:Dynamics<float> ->
Dynamics<unit>

Please note that in the description I distinguish the current and this control
processes. You can use properties IsPassivated and Reactivate from any
computation in the DynamicsCont workflow. They don’t affect the current
computation and its control flow in any way. But methods Hold, HoldD and
property Passivate that are related to the current control process should be
called inside of an object value of the Process class type. It means that these
two methods and the Passivate property affect the current computation in the
DynamicsCont workflow, either suspending it or putting to sleep. Moreover, the
Passivate property works wrong if you use it with a Process instance value
that the control flow doesn’t belong to. The process can passivate only itself.

You should never use the result of the Activate property directly. The cor-
responded computation is called automatically by methods Start and StartD
that launch the control process. Certainly, the resulting computation in the
Dynamics workflow should be involved in the main simulation. These two meth-
ods already contain a call to the Dynamics. once function so that the start occurs
only once. The difference between the methods is in the argument type. The
both methods return a more lower computation of type Dynamics<unit>, which
allows us to easily integrate the control processes with the rest part of Aivika.

The constructor of the Process class type accepts the event queue. The rea-
son is that the control processes are implemented on top of the queue. Also you
can create as many control processes and then start them during the simulation
as you want. The event queue is that point which binds the control processes
with the main simulation after the processes are started. This scheme is very
simple and it must work.

The next section illustrates how we can apply the control processes to sim-
ulate our sample model and dramatically reduce the size of the code.
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6.5 Applying Process-oriented Paradigm

Under the process-oriented paradigm, we model simulation activities with help
of control processes. We can easily treat such things as suspension and resump-
tion of the control flow, request and release of the resources etc.

In Aivika we use the DynamicsCont workflow to model the processes them-
selves. I'll illustrate the idea on the same sample model which was described
earlier in section 6.1, page 53, and then solved repeatedly in section 6.3, page
58. Now the solution uses the Process class type.

open System

open Maritegra.Aivika
open Maritegra.Aivika.SD

let specs = {

StartTime=0.0; StopTime=10000.0; DT=1.0;
Method=RungeKutta4; Randomness=SimpleRnd

let upRate = 1.0 / 1.0 // reciprocal of mean up time
let repairRate = 1.0 / 0.5 // reciprocal of mean repair time

let mutable totalUpTime = 0.0 // total up time for all machines

let expovariate =
let rnd = new Random ()
in fun lambda ->
- log (rnd.NextDouble ()) / lambda

type Machine (e, id) =
inherit Process (e)

override x.Activate = dynamicscont {
while true do
let! startUpTime = DynamicsCont.lift time
let upTime = expovariate upRate
do! x.Hold (upTime)
let! finishUpTime = DynamicsCont.lift time
totalUpTime <- totalUpTime +
(finishUpTime - startUpTime)

let repairTime = expovariate repairRate
do! x.Hold (repairTime)
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let env = Env ()
let machines = [| for i = 1 to 2 do yield Machine (env, i) |[]

let starter =
dynamics {
for m in machines do
do! m.StartD (starttime) // launch the machine
} |> Dynamics.once

let system = dynamics {

do! starter // launch the machines
do! env.Run // launch the environment
return! (totalUpTime / (2.0 * stoptime))
}
[<EntryPoint>]

let main args =

let result = Dynamics.runlast system specs
printfn "Long-run proportion of up time = %f" result

0

As before, DT has no any sense for this model but we have to define it,
though. In case of the hybrid model DT would play already an important role.
The processes are implemented on top of the event queue that doesn’t use DT.

Here we create a new derived class type Machine and define its property
Activate. The property returns a computation in the DynamicsCont workflow.
This computation will be involved in the main simulation after the starter
value is involved in computation value system. To optimize, we apply the
Dynamics.once function in calculation of value starter that launches two ma-
chines although this optimization is not obligatory, for the StartD method uses
the same once function. Also we have to launch the event queue after the
machines.

What is new is that how the Activate property is constructed. This is
an infinite loop (terminated automatically after the simulation is complete, i.e.
when time is greater than stoptime) inside of which we model the work of
the machine. To get the current simulation time, we use the time built-in that
returns a computation of type Dynamics<float>. As you know from section 5.2,
page 50, such a computation must be lifted to be involved in the top computation
which has another generic type DynamicsCont. Therefore we apply the 1ift
function of module DynamicsCont. In such a way we get to know of the current
simulation time inside of the top computation.

let! startUpTime = DynamicsCont.lift time



66 CHAPTER 6. DISCRETE EVENT SIMULATION (DES)

In the same way we can receive the current value of any computation in the
Dynamics workflow, including the integrals. It allows us to truly build hybrid
models.

After we received the current simulation time and calculated the up time,
we suspend the current control flow of the top computation.

do! x.Hold (upTime)

Please note that we have to apply the special do! construct to involve this
action in our computation. Without it the suspension wouldn’t happen. An-
other subtle thing is related to understanding of that the Hold method doesn’t
work with an instance value of the Process class type. It suspends the cur-
rent computation, although this method is supposed to be called inside of the
Process instance value. Each process is started with a new control flow that
initially belongs to it. It is a good practice to keep the control flow inside of the
process instance. Please be careful!

To simulate the both machines, we create one event queue. In general, we
can always use one event queue whatever simulation would be. But you can use
as many event queues as you need. Only you should involve all the computations
returned by the Run method in the main simulation.

let system = dynamics {
do! starter // launch the machines
do! env.Run // launch the environment
return! (totalUpTime / (2.0 * stoptime))

The main advantage of the process-oriented paradigm is its simplicity. All
the hard work is performed by the F# compiler which generates a lot of closures.
Namely through the closures, the compiler binds different parts of the code. But,
fortunately, all this happens transparently for us.

The next section is devoted to that how we can manage the limited resources
in our simulation model.

6.6 Managing Resources

The resources are usually limited. If some control process tries to acquire the
depleted resource then the process is suspended until the resource is available
again. After the resource is acquired and used, the control process must release
it to make available for other processes.

To model such a behavior, Aivika contains the Resource class type. It
contains a constructor and four properties, three of them return computations
in the DynamicsCont workflow. To have effect, these computations must be
involved in the simulation with help of keywords do! and let!.
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Table 6.4: Methods and Properties on the Resource type

Function and type

Description

new:
e:Env * n:int ->
Resource

member Env:
Env

member N:
DynamicsCont<int>

member Request:
DynamicsCont<unit>

member Release:
DynamicsCont<unit>

Creates a new resource that can be
acquired n times without blocking

Returns the event queue which
the resource is associated with

Returns how many times the resource
can be yet acquired without blocking

Requests the resource, which is acquired
if available. Otherwise the current
control process is suspended /blocked
until the resource becomes available

Releases the resource making it available
for other control processes

To suspend and resume control processes, the resource needs an event queue.
Therefore the constructor requires it. The integer parameter n specifies how
many times the resource can be immediately acquired without suspending the
control process(es).

Properties N, Request and Release return actions that should be yet in-
volved in the simulation. Without involving, these actions have no any effect.
The N property requires the let! construct. Two others need do!.

The Resource class type is constructed in such a way that the resource can
be used simultaneously by different parallel simulations. It tracks the state for
each simulation separately. In general, such a capability to work simultaneously
is inherent in all built-in functions and class types of Aivika, about which you
can find more information in section 8.1, page 95. However, the sample models
considered in this chapter mostly cannot be simulated in parallel. Section 6.10,
page 80, shows how you can prepare your models for parallel simulations.

I’ll illustrate the work with the resources using a sample model described in

.

Two machines, but sometimes break down. Up time is exponen-
tially distributed with mean 1.0, and repair time is exponentially
distributed with mean 0.5. In this example, there is only one re-
pairperson, so the two machines cannot be repaired simultaneously
if they are down at the same time.
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In addition to finding the long-run proportion of up time, let us also
find the long-run proportion of the time that a given machine does
not have immediate access to the repairperson when the machine
breaks down. Output values should be about 0.6 and 0.67.

The model is as follows.
open System

open Maritegra.Aivika
open Maritegra.Aivika.SD

let specs = {

StartTime=0.0; StopTime=10000.0; DT=1.0;
Method=RungeKutta4; Randomness=SimpleRnd

let upRate = 1.0 / 1.0 // breakdown rate
let repairRate = 1.0 / 0.5 // repair rate

// number of times the machines have broken down
let mutable nRep = 0

// number of breakdonws in which the machine
// started repair service right away
let mutable nImmedRep = 0O

// total up time for all machines
let mutable totalUpTime = 0.0

let expovariate =
let rnd = new Random ()
in fun lambda ->
- log (rnd.NextDouble ()) / lambda

type Machine (e, repairPerson: Resource, id) =
inherit Process (e)

override x.Activate = dynamicscont {
while true do
let! startUpTime = DynamicsCont.lift time
do! x.Hold (expovariate upRate)
let! finishUpTime = DynamicsCont.lift time
totalUpTime <- totalUpTime
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+ (finishUpTime - startUpTime)
nRep <- nRep + 1
//
let! n = repairPerson.N
if n = 1 then
nImmedRep <- nImmedRep + 1
do! repairPerson.Request
do! x.Hold (expovariate repairRate)
do! repairPerson.Release

let env = Env Q)
let repairPerson = Resource (env, 1)

let machines =
[| for i =1 to 2 do
yield Machine (env, repairPerson, i) |]

let starter =
dynamics {
for m in machines do
do! m.StartD (starttime) // launch the machine
} |> Dynamics.once

let system = dynamics {

do! starter // launch the machines
do! env.Run // launch the environment

let m1 = (totalUpTime / (2.0 * stoptime))
let m2 = (float nImmedRep) / (float nRep)

return! Dynamics.zip ml (eta m2)

3

[<EntryPoint>]
let main args =

let result = Dynamics.runlast system specs
printfn "Long-run proportion of up time = %f" (fst result)

printfn "Long-run proportion of the time when \
immediate access to the repairperson = %f" (snd result)
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There is only one repairperson. The corresponded resource has the following
declaration:

let repairPerson = Resource (env, 1)

To check whether the repairperson is free or busy, we use the N property.
The next code increases the counter only if he/she is free. If the repairperson
is busy then n equals 0.

let! n = repairPerson.N
if n = 1 then
nImmedRep <- nImmedRep + 1

To repair the broken machine, we have to acquire the resource busying the
repairperson. This operation suspends the current control process if he/she is
already busy with another machine.

do! repairPerson.Request

After the resource is acquired, the repairing process is modeled as a short-
time suspension with help of the Hold method.

do! x.Hold (expovariate repairRate)

After the machine is repaired, we must release the resource, i.e. free the
repairperson.

do! repairPerson.Release

The rest part of the code is mostly the same as before. However, there
is one subtle thing related to calculation of the second output proportion. A
computation in the Dynamics workflow is actually a function which is repeatedly
calculated in the time points. Therefore the inner value m2 will be recalculated
for each time point, which allows us to use counters nImmedRep and nRep. By
the same reason we can use counter totalUpTime in all similar models. Only
remember that using such simple counters forbids to simulate the model in
parallel.

let system = dynamics {

let ml
let m2

(totalUpTime / (2.0 * stoptime))
(float nImmedRep) / (float nRep)

return! Dynamics.zip ml (eta m2)

The next section describes how we can use the resources to passivate and
reactivate the control processes.
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6.7 Passivating and Reactivating Processes

Each process can passivate itself at any time. It will be in this state until some
other process reactivates it. To passivate, we can apply the Passivate property
computation. The Reactivate property computation takes another process out
of the hibernation.

The next model described in [1] illustrates the approach.

Variation of the previous models. Two machines, but sometimes
break down. Up time is exponentially distributed with mean 1.0,
and repair time is exponentially distributed with mean 0.5. In this
example, there is only one repairperson, and she is not summoned
until both machines are down. We find the proportion of up time.
It should come out to about 0.45.

Now we have to passivate one broken machine until the both machines are
broken.

#nowarn "40"
open System

open Maritegra.Aivika
open Maritegra.Aivika.SD

let specs = {
StartTime=0.0; StopTime=10000.0; DT=1.0;

Method=RungeKutta4; Randomness=SimpleRnd

let upRate = 1.0 / 1. // breakdown rate
let repairRate = 1.0 / 0.5 // repair rate

// number of machines currently up
let mutable nUp = 0

// total up time for all machines
let mutable totalUpTime = 0.0

let expovariate =
let rnd = new Random ()
in fun lambda ->
- log (rnd.NextDouble ()) / lambda

type Machine (e, repairPerson: Resource, m2: Lazy<Machine>, id) =
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inherit Process (e)
do nUp <- nUp + 1

override x.Activate = dynamicscont {
while true do
let! startUpTime = DynamicsCont.lift time
do! x.Hold (expovariate upRate)
let! finishUpTime = DynamicsCont.lift time
totalUpTime <- totalUpTime
+ (finishUpTime - startUpTime)
//
nUp <- nUp - 1
if nUp = 1 then
do! x.Passivate
else
let! n
if n =

= repairPerson.N
1 then

do! m2.Value.Reactivate
do! repairPerson.Request
do! x.Hold (expovariate repairRate)
nUp <- nUp + 1
do! repairPerson.Release

env = Env ()
repairPerson = Resource (env, 1)

rec machines = []
for i =1 to 2 do
yield Machine (env, repairPerson,
lazy (machines.[1 - (i - 1)1), i) ]

starter =
dynamics {
for m in machines do
do! m.StartD (starttime) // launch the machine
} |> Dynamics.once

system = dynamics {
do! starter // launch the machines
do! env.Run // launch the environment

return! (totalUpTime / (2.0 * stoptime))
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}

[<EntryPoint>]
let main args =

let result = Dynamics.runlast system specs
printfn "The proportion of up time = %f" result

0

After the machine is broken, we decrease the counter of machines currently
up. If only this machine is broken then it passivates itself. Otherwise, the both
machines are broken and the last of them, i.e. current, reactivates another in
that case if the repairperson is free, i.e. n equals 1.

nUp <- nUp - 1
if nUp = 1 then
do! x.Passivate
else
let! n
if n =

= repairPerson.N
1 then
do! m2.Value.Reactivate

Also please note how we use a laziness to create the machines so that they
would know of each other.

Until now we used simple numeric counters to transfer data from the DES
submodel to the main computation in the Dynamics workflow. Nevertheless,
there is a more safe approach that allows us better to integrate DES into the
hybrid model.

6.8 Introducing Variables

Almost everything is represented in Aivika as computations. Even the variables
of System Dynamics are computations in the Dynamics workflow. But some-
times we need a true variable, something that we can change imperatively. To
represent such variables, Aivika contains the generic Var class type that has the
following methods and properties.

Table 6.5: Methods and Properties on the Var<’a> type

Function and type Description

new: Creates a new variable with initial value i
e:Env x i:’a ->
Var<’a>
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new: Creates a new variable with the initial
e:Env * i:Dynamics<’a> -> value equaled to the initial value of
Var<’a> computation i

member Env: Returns the event queue which

Env the variable is associated with

member Value: Returns the variable value

Dynamics<’a>

member SetValue: Sets the variable value
’a -> Dynamics<unit>

The object value of type Var<’a> tracks the history of all changes. It is
necessary, for the simulation time is a rather relative thing in Aivika. There
can be computation branches where the time flows differently during the main
simulation. To coordinate these branches, we have to use a common event
queue. When some computation requests the variable for its value, our variable
asks the event queue to actuate all pending events which activation time doesn’t
exceed the current simulation time. It allows the variable to have always the
actual state under the condition that all events and all control processes that
may change the variable use the same event queue. This event queue must be
the first argument of the Var type constructor. For example, you will always
have a synchronized model if you will use only one event queue for the whole
simulation.

The Value and SetValue members of the class type return computations
that must be yet involved in the simulation. The Value property computation
requires the let! construct that allows us to know the current value of the
variable. The SetValue method computation requires the do! construct to
update the variable value. It is important that these members can be used in
parallel simulations.

To simplify incrementing and decrementing the variable value, Aivika pro-
vides also the Var module with the following functions.

Table 6.6: Var module functions

Function and type Description

Var.env: Returns the event queue which
Var<’a> -> Env the variable is associated with
Var.value: Returns the variable value

Var<’a> -> Dynamics<’a>

Var.setValue: Sets the variable value
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’a -> Var<’a> ->
Dynamics<unit>

inline Var.incValue: Increments the variable value
’a —> Var<’a> —>

Dynamics<unit>

when ’a:

(static member (+): ’a * ’a -> ’a)

inline Var.decValue: Decrements the variable value
’a -> Var<’a> ->

Dynamics<unit>

when ’a:

(static member (-): ‘’a * ’a -> ’a)

The inline functions incValue and decValue are just a syntactic sugar. The
first of them wants the type to have the (+) operator. The decValue function
requires the type with the (-) operator defined. All built-in numeric types satisfy
these requirements.

In the next section I'll provide a modification of the sample model from
section 6.5, page 64, rewritten with help of the generic Var type. Now I will
confine myself to show a simple but safe generator of Fibonacci numbers, which
I mentioned earlier in subsection 4.13.2, page 46. This generator is ready for
parallel simulations. It returns a sequence of numbers in each time point with
interval DT.

open System

open Maritegra.Aivika
open Maritegra.Aivika.SD

let specs = {

StartTime=0.0; StopTime=1000.0; DT=1.0;
Method=RungeKutta4; Randomness=SimpleRnd

}

let env = Env ()

let fib = Var<bigint> (env, bigint 0)
let proc =

{ new Process (env) with

override x.Activate = dynamicscont {
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let next a = dynamicscont {
do! DynamicsCont.lift <| fib.SetValue (a)
do! x.HoldD (dt)
let rec loop a b = dynamicscont {
let c=a+b
do! next c

do! loop b c

do! next OI
do! next 1I
do! loop 0T 1I

let starter = proc.StartD (starttime) // launch the process
let system = dynamics {

do! starter // launch the process
do! env.Run // launch the environment

return! fib.Value

3

[<EntryPoint>]
let main args =

let results = Dynamics.run system specs
Console.WriteLine ("Fibonacci Number")

for r in results do
Console.WriteLine (r)

The program returns a series of numbers in the CSV format. Perhaps the
most difficult place in this model is that one which generates data:

let next a = dynamicscont {
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do! DynamicsCont.lift <| fib.SetValue (a)
do! x.HoldD (dt)

Here the next function has type bignint -> DynamicsCont<unit>. The
first construction generates a new Fibonacci number. The SetValue method
returns a computation of type Dynamics<unit>. This computation must be
lifted to be involved in the top computation of type DynamicsCont<unit>. After
we generated a new value, we suspend the current control process for the time
interval specified by the integration DT parameter of the simulation specs.

The £ib variable keeps all the history of changes, where each change of the
variable value corresponds to some time. Then the Value property returns a
computation that represents all these values distributed in time and we can use
it in our simulation. This is namely that mechanism with help of which the
DES submodel can transfer its results to other parts of the hybrid model. To
transfer data in opposite direction, we apply the 1ift function in case of the
process-oriented submodel. In case of the activity-oriented and event-oriented
submodels this link is even more simple.

let system = dynamics {

do! starter // launch the process
do! env.Run // launch the environment

return! fib.Value

Here we ultimately return a computation representing a series of Fibonacci
numbers, that is fib.Value. Each time some external computation requests
for the number, the fib variable checks the event queue which this variable is
associated with, i.e. env. The env queue is also associated with the proc control
process. So, when all pending events of the queue are raised, they actuate
process proc. This process finally updates the £ib variable value. Thus, this
variable is always in an actual state. Here we could depart slightly from our
scheme and even omit the third line where the event queue is explicitly launched,
for the variable does the same.

We didn’t use numeric counters in this simple example. As a result, our
simulation is slower than it could be, although it can be launched in parallel now.
Perhaps what is more important is that data generated by the DES submodel
can be used by other parts of the hybrid model. The next section is devoted to
these subjects.

6.9 Using Variables and Integrating DES

The variables of generic type Var serve two purposes. First, they are a bridge
with help of which other parts of the hybrid model can receive data from the
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DES submodels. Second, the variables allow us to create models ready for
parallel simulations. An idea is to replace a counter or state variable with an
object value of generic type Var if necessary.

The next model is a rewritten version of the model described in section 6.5,
page 64. It doesn’t use counters any more. It is ready for parallel simulations.
Its results can be used by other submodels.

open System

open Maritegra.Aivika
open Maritegra.Aivika.SD

let specs = {

StartTime=0.0; StopTime=10000.0; DT=1.0;
Method=RungeKutta4; Randomness=SimpleRnd

let upRate = 1.0 / 1.0 // reciprocal of mean up time
let repairRate = 1.0 / 0.5 // reciprocal of mean repair time

let expovariate =
let rnd = new Random ()
in fun lambda ->
- log (rnd.NextDouble ()) / lambda

let env = Env ()

// total up time for all machines
let totalUpTime = Var<float> (env, 0.0)

type Machine (e, id) =
inherit Process (e)

override x.Activate = dynamicscont {
while true do
let! startUpTime = DynamicsCont.lift time
let upTime = expovariate upRate
do! x.Hold (upTime)
let! finishUpTime = DynamicsCont.lift time
do! DynamicsCont.lift (totalUpTime |>
Var.incValue (finishUpTime - startUpTime))
let repairTime = expovariate repairRate
do! x.Hold (repairTime)
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let machines =
[l for i 1 to 2 do
yield Machine (env, i) 1]

let starter =
dynamics {
for m in machines do
do! m.StartD (starttime) // launch the machine
} |> Dynamics.once

let system = dynamics {

do! starter // launch the machines
do! env.Run // launch the environment
return! (totalUpTime.Value / (2.0 * stoptime))
}
[<EntryPoint>]

let main args =

let result = Dynamics.runlast system specs
printfn "Long-run proportion of up time = %f" result

0

Please note how we replaced the counter with a new variable with initial
value 0.0. This variable means a total up time for all machines as before.

let totalUpTime = Var<float> (env, 0.0)

After the machine is broken, we have to update the variable. Now we apply
the incValue function from module Var. The result must be yet lifted to be
included in the top computation.

do! DynamicsCont.lift (totalUpTime |[>
Var.incValue (finishUpTime - startUpTime))

In the final computation we use the variable to find the desired proportion.
Now values totalUpTime.Value and stoptime are of the same rank. The both
are computations of type Dynamics<float>.

let system = dynamics {

return! (totalUpTime.Value / (2.0 * stoptime))

If we pursue the goal to integrate DES into the hybrid model then we can use
the generic Var type only for those variables that return the final result as in the
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model above. The totalUpTime object value is such a variable. But it would be
an overkill if you replaced all your internal counters and state variables (inside
of the DES submodel) in that case if you really don’t care of parallel simulations
and you know exactly the order of calculations in which these variables are used.
It would be reasonable to use simple variables without Var. The totalUpTime
value is not that case. The order in which this variable will be used by other
parts of the hybrid model is undefined in general case. Moreover, all previous
models described in this chapter weren’t ready for integration into the hybrid
model. They all should use the Var generic type to return their results. But
then it would be difficult for me to describe the models in simple way.

The Var type is not actually restricted to the purpose of integrating DES.
It can be applied for integrating the agent-based submodels as well. The agents
use the event queue too. They all are integrated well and form a unified scheme
of modeling, where the Dynamics workflow is a glue that joins different parts.

6.10 Preparing Model for Parallel Simulations

Using the Var object values instead of different variables such as counters is fine
if you want to integrate DES into the hybrid model. But it would be an overkill
for internal variables of the DES submodel. However, if you care of parallel
simulations then you cannot use simple variables inside of the DES submodel to
save the internal state for the same computation during different simulations.
If you can create different computations for different simulations then there is
no such problem.

Fortunately, Aivika provides the generic MemorylessVar class type that
solves the task with common computation. This type is a lightweight version of
the Var type, which has no memory about variable’s value changes but which
knows about parallel execution. This version is more efficient. The generic
MemorylessVar class type has absolutely the same interface.

Table 6.7: Methods and Properties on the MemorylessVar<’a>
type

Function and type Description

new: Creates a new variable with initial value i
e:Env *x i:’a ->
MemorylessVar<’a>

new: Creates a new variable with the initial
e:Env * i:Dynamics<’a> -> value equaled to the initial value of
MemorylessVar<’a> computation i

member Env: Returns the event queue which

Env the variable is associated with
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member Value: Returns the variable value
Dynamics<’a>

member SetValue: Sets the variable value
’a -> Dynamics<unit>

Similarly, the MemorylessVar module has the same functions as the Var
module.

Table 6.8: MemorylessVar module functions

Function and type Description
MemorylessVar.env: Returns the event queue which
MemorylessVar<’a> -> Env the variable is associated with
MemorylessVar.value: Returns the variable value

MemorylessVar<’a> -> Dynamics<’a>

MemorylessVar.setValue: Sets the variable value
’a —> MemorylessVar<’a> ->
Dynamics<unit>

inline MemorylessVar.incValue: Increments the variable value
’a -> MemorylessVar<’a> ->

Dynamics<unit>

when ’a:

(static member (+): ’a * ’a -> ’a)

inline MemorylessVar.decValue: Decrements the variable value
’a -> MemorylessVar<’a> ->

Dynamics<unit>

when ’a:

(static member (-): ’a * ’a -> ’a)

To prepare the model for parallel simulations, just replace your internal state
variables with object values of generic type MemorylessVar. These objects don’t
consume so much memory as the Var object values. They don’t keep the history
of all changes. Nevertheless, they check the current simulation time and won’t
allow neither requesting or updating the past values.

Certainly, another obvious approach is to create all your computations anew
for each parallel simulation. Then we wouldn’t need the MemorylessVar type
at all. That approach is preferable. Unfortunately, it is not always possible.
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Chapter 7

Agent-based Modeling

The agent-based modeling is quite different in comparison with DES and System
Dynamics. The main entity is an agent which is defined as a state machine.
The agents can pass messages to each other. Also we can assign the timer
and timeout handlers to each active state in which the agent can be. These
handlers are computations that are actuated in the specified amount of time.
This is what gives a moving force to the agents making them an excellent tool
for modeling some systems.

The good news is that Aivika supports the agent-based modeling and allows
you to create and use agents in your hybrid models. It is possible thanks to the
fact that the agents are based on the Dynamics workflow as everything else in
Aivika. Moreover, using such an excellent feature of F# as object expressions
makes the definition of agents an appealing task. Like the process-oriented
models of DES the agents are a result of combination of the object-oriented and
functional programming.

7.1 Agents Are State Machines

The agents are implemented as state machines. The states can be nested. There
are two special states: the start and final ones. All other states in which the
agent can be are descendants of the start state. After the agent passes to the
final state, it stops.

We can assign to each state a set of timer and timeout handlers which are
active while the state itself is active. All nested states are active simultaneously.
If the agent passes to another state then all handlers for the inactivated states
are disabled. These handlers are such computations in the Dynamics workflow
which are actuated in the specified amount of time. The timeout handler is
actuated only once. The timer is actuated repeatedly with the specified period.
This is all the difference between the timer and timeout handlers.

To functionate, each agent uses the event queue. Namely through the queue,
the handlers are actuated. Also the agents can be integrated into the hybrid
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model with help of the queue and the Dynamics workflow. In case of need the
agents can use the Var type to transfer data to other parts of the model. It is
possible thanks to the fact that almost all operations with agents are defined in
the Dynamics workflow, which makes the integration seamless.

In general we must define the internal states for the agent and override two
properties Activate and Deactivate. The both properties return computa-
tions in the Dynamics workflow. They have a default implementation. In the
Activate property we can define the initial state to which the agent passes from
the start state. But before it we can assign a set of timer and timeout handlers
that will be active until the agent goes to the final state, i.e. while the agent is
alive. The computation returned by the Deactivate property is actuated only
before the agent passes to the final state to stop.

The abstract Agent class type represents the agent and has methods and
properties defined in the following table, where the abstract State class type
represents an internal state in which the agent can be.

Table 7.1: Methods and Properties on the Agent type

Function and type Description

new: Creates a new agent
e:Env -> Agent

member Env: Returns the event queue which
Env the agent is associated with

member StartState:
State

member FinalState:
State

member State:
Dynamics<State>

member SetState:
st:State —>
Dynamics<unit>

member SetInitialState:

st:State —>
Dynamics<unit>

abstract Activate:
Dynamics<unit>

Returns the start state

Returns the final state

Returns the current innermost
active state

Sets the current innermost
active state (e.g. from the timer
or timeout handler)

Sets the current innermost
active state (during the agent
or state activation)

Activates the agent (there is
a default implementation that
does nothing)
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abstract Deactivate:
Dynamics<unit>

member SetTimeout:
t:float *
action:Dynamics<unit> ->
Dynamics<unit>

member SetTimeoutD:
t:Dynamics<float> *
action:Dynamics<unit> ->
Dynamics<unit>

member SetTimer:

t:float *
action:Dynamics<unit> ->
Dynamics<unit>

member SetTimerD:
t:Dynamics<float> *
action:Dynamics<unit> ->
Dynamics<unit>

member Start:
t:float —>
Dynamics<unit>

member StartD:
t:Dynamics<float> ->
Dynamics<unit>

Inactivates the agent before it
goes to the final state (there is
a default implementation that
does nothing)

Adds a timeout handler to

the start state with computation
action which will be actuated
in time interval t unless the
agent passes to the final state

Adds a timeout handler to

the start state with computation
action which will be actuated
in time interval t unless the
agent passes to the final state

Adds a timer handler to

the start state with computation
action which will be actuated
in time interval t and then
repeated with this period over
and over until the agent

passes to the final state

Adds a timer handler to

the start state with computation
action which will be actuated
in time interval t and then
repeated with this period over
and over until the agent

passes to the final state

Starts the agent at time t

(only once)

Starts the agent at time t
(only once)

You should never call the Activate and Deactivate members directly. The
simulation engine will do it for you. The Activate member is called after the
agent is started. The computation returned by the Deactivate member is used,
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i.e. involved in the main simulation, before the agent passes to the final state.

Members SetTimeout, SetTimeoutD, SetTimer and SetTimerD allow you
to assign the timeout and timer handlers to the start state of the agent. They
are actuated unless the agent stops. There are the same methods for the State
type. They all endow the agent with the internal moving force.

Members State, SetState and SetInitialState allow you to manage the
innermost active state. The SetInitialState member can be applied during
the agent or its state activation. The agent activation literally means an acti-
vation of its start state. This member allows you to define the next innermost
active state. It is very useful if you have a state machine with nested states.
The SetState member can be called in all other cases, for example, from the
timer and timeout handlers. Actually, these two members do the same thing:
they move the agent to go to the next state.

To stop the agent, you can just set the final state active.

dynamics {

do! agent.SetState (agent.FinalState)

The most part of the members are computations in the Dynamics workflow.
To take effect, they must be involved in the simulation with help of constructs
let! and do! as in the example above.

In the next section I will show how we can use agents. To proceed to the
example, I still have to provide a description of the abstract State class type
before. This type has similar members and they have the same meaning. Here
we can think about the agent as mainly an encapsulation of its start state.
Generally, you can glance at the next table. Only please pay attention to two
constructors. The first constructor creates a child state for the start state. The
second constructor allows you to create the child state for any specified state.
The former is just a shortcut for the latter, where the start state of the agent
is used implicitly.

Table 7.2: Methods and Properties on the State type

Function and type Description

new: Creates a child state for the start
Agent -> State state of the agent

new: Creates a child state for the specified
parent:State -> State parent state

member Agent: Returns the agent

Agent

member Parent: Returns the parent state
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State option

abstract Activate:
Dynamics<unit>

abstract Deactivate:
Dynamics<unit>

member SetTimeout:
t:float *
action:Dynamics<unit> ->
Dynamics<unit>

member SetTimeoutD:
t:Dynamics<float> *
action:Dynamics<unit> ->
Dynamics<unit>

member SetTimer:

t:float *
action:Dynamics<unit> ->
Dynamics<unit>

member SetTimerD:
t:Dynamics<float> *
action:Dynamics<unit> ->
Dynamics<unit>

Activates the state (there is
a default implementation that
does nothing)

Inactivates the state (there is
a default implementation that
does nothing)

Adds a timeout handler to
this state with computation
action which will be actuated
in time interval t unless the
state is inactivated

Adds a timeout handler to
this state with computation
action which will be actuated
in time interval t unless the
state is inactivated

Adds a timer handler to

this state with computation
action which will be actuated
in time interval t and then
repeated with this period over
and over until the state

is inactivated

Adds a timer handler to

this state with computation
action which will be actuated
in time interval t and then
repeated with this period over
and over until the state

is inactivated
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As before, you should never call members Activate and Deactivate di-

rectly. Aivika does it each time you change the innermost active state with help
of the SetState and SetInitialState methods.

The timer and timeout handlers have the same meaning as it was for the
Agent type. Only they are assigned to the state instance. If the state is inac-
tivated then all handlers are disabled immediately. It happens automatically.
Moreover, if this state will be activated later then you will have to assign the
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handlers again, usually in the Activate member. Also if you change the in-
nermost active state then all intermediate states that the agent should pass to
achieve the target state are activated sequentially from start to end.

The states are very lightweight. They are rather cheap. You can dynamically
create new states as many times as you want, even after the agent itself is
activated. Furthermore, you can dynamically create new agents and then start
them at any time. It allows you to create both very simple and quite complicated
models.

As regards to message passing, the agents are just objects. Therefore they
can call methods of other agents. Only now the methods should generally return
computations in the Dynamics workflow. This workflow is constructed in such
a way that these computations cannot lead to suspension or stopping of the
control flow of agents. Every agent can call another agent and even move it
to pass to some state. There is no limitations, although it would be a good
practice if only the agent itself switched to another state as this operation is
low-level enough. But the agent can provide a high-level method that could be
called by other agents and that would already change the state in its body.

In the next section I’ll show how nicely the agents and their states can be
defined using the object expressions.

7.2 Simulating Bass Diffusion Model

An agent-based version of the Bass Diffusion model is described in the AnyLogic
tutorial®.

The model describes a product diffusion process. Potential adopters
of a product are influenced into buying the product by advertising
and by word of mouth from adopters — those who have already
purchased the new product. Adoption of a new product driven by
word of mouth is likewise an epidemic. Potential adopters come into
contact with adopters through social interactions. A fraction of these
contacts results in the purchase of the new product. The advertising
causes a constant fraction of the potential adopter population to
adopt each time period.

I will show how the same model can be simulated with help of Aivika. I will
create new class type Person that will be derived from the Agent type. This
agent will have two additional states: potentialAdopter and adopter. The
former will be an initial state, i.e. the agent will pass to it immediately from the
start state. I will assign a timeout handler to the potentialAdopter state. This
handler will transform the potential adopter to an adopter. The time interval
in which the handler is actuated depends on the advertising effectiveness. After
the person becomes the adopter, he/she contacts periodically with other persons

Lhttp://www.xjtek.com /anylogic/help/topic/com.xj.anylogic.help/html/ABT/
Bass%20Diffusion%20Model.html
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transforming them to adopters with the specified adoption fraction. To model
this, I will assign already a timer handler to the adopter state.

#nowarn "40"
open System

open Maritegra.Aivika
open Maritegra.Aivika.SD

let n = 500 // the number of agents

let advertisingEffectiveness = 0.011
let contactRate = 100.0
let adoptionFraction = 0.015

let specs =
{ StartTime = 0.0; StopTime = 8.0; DT = 0.1;
Method = RungeKutta4; Randomness = SimpleRnd }

let random =

let rnd = new Random ()

in fun a b -> rnd.Next (a, b)
let randomTrue =

let rnd = new Random ()

in fun p -> rnd.NextDouble () <= p
let expovariate =

let rnd = new Random ()

in fun lambda ->

- log (rnd.NextDouble ()) / lambda

let e = Env ()

let potentialAdopters = Var (e, 0)
let adopters = Var (e, 0)

type Person () as agent =
inherit Agent (e)
static let mutable agents = ResizeArray<Person> ()

let rec potentialAdopter =
{ new State (agent) with
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member x.Activate = dynamics {
do! Var.incValue 1 potentialAdopters

// create a timeout that will hold
// while the state is active
do! x.SetTimeout (expovariate
advertisingEffectiveness,
agent.SetState (adopter))

member x.Deactivate = dynamics {
do! Var.decValue 1 potentialAdopters

}
and adopter =
{ new State (agent) with
member x.Activate = dynamics {
do! Var.incValue 1 adopters

// create a timer that will hold
// while the state is active
do! x.SetTimerD (dynamics {
return expovariate
contactRate
},
dynamics {
do! agent.SayBuy
1))

member x.Deactivate = dynamics {
do! Var.decValue 1 adopters

}

member private x.SayBuy = dynamics {

do! agents.[random 0 (agents.Count - 1)].Buy
}

member private x.Buy = dynamics {
let! st = x.State
if st = potentialAdopter then
if randomTrue adoptionFraction then
do! x.SetState (adopter)
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override x.Activate = dynamics {

agents.Add (x)

do! x.SetInitialState (potentialAdopter)
X

[<EntryPoint>]
let main args =

let starter =
dynamics {
for i = 1 to n do
let agent = Person ()
do! agent.StartD (starttime)
} |> Dynamics.once

let model =
dynamics {
do! starter

let! t time
let! al = potentialAdopters.Value
let! a2 = adopters.Value

return (t, al, a2)

let results = Dynamics.run model specs
printfn "Time,Potential Adopters,Adopters"

for (t, al, a2) in results do
printfn "%f,%i,%i" t al a2

We track the number of all agents. Since the agents never pass to the final
state, we don’t define the Deactivate member for the agent, although it would
be a good practice. In the Activate member we add each new agent to a static
list that we use to send messages to random agents.

type Person () as agent =
inherit Agent (e)

static let mutable agents = ResizeArray<Person> ()

override x.Activate = dynamics {
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agents.Add (x)
do! x.SetInitialState (potentialAdopter)
}

Also we see that the agent immediately passes to the potentialAdopter
state. That state increases the number of potential adopters and assigns a
timeout handler that will transform the potential adopter to an adopter. After
it happens, the computation of the Deactivate member is used, where we
decrease the number of potential adopters.

let rec potentialAdopter =
{ new State (agent) with
member x.Activate = dynamics {
do! Var.incValue 1 potentialAdopters

// create a timeout that will hold
// while the state is active
do! x.SetTimeout (expovariate
advertisingEffectiveness,
agent.SetState (adopter))

member x.Deactivate = dynamics {
do! Var.decValue 1 potentialAdopters

3

The adopter state is similar but there is a subtle thing related to the timer.
We define the time period as a computation of type Dynamics<float>. Such a
computation is actually a function. It will be called anew every time the new
period is requested. Therefore the periods will be different. Please pay a special
attention to this fact. Otherwise, the simulation would be more rough, or instead
we would have to use the timeout handler inside of which we would manually
created repeatedly a new timeout to imitate our periodic timer. Each timeout
handler can be actuated zero or one time only. The timer can be actuated zero,
one or many times. All depends on that whether the state will be still active or
not.

and adopter =
{ new State (agent) with
member x.Activate = dynamics {
do! Var.incValue 1 adopters

// create a timer that will hold
// while the state is active
do! x.SetTimerD (dynamics {
return expovariate
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contactRate
3,
dynamics {
do! agent.SayBuy
)

member x.Deactivate = dynamics {
do! Var.decValue 1 adopters

}

In the timer handler the agent sends to random agent a message to buy
the product. Here we use the list of all activated agents. Actually, we could
simplify the code and put the contents of the SayBuy member inside of the timer
definition. The only reason why I created a separate member was that the code
wouldn’t be fully placed on the page of this book.

member private x.SayBuy = dynamics {
do! agents.[random O (agents.Count - 1)].Buy

}

member private x.Buy = dynamics {
let! st = x.State
if st = potentialAdopter then
if randomTrue adoptionFraction then
do! x.SetState (adopter)
X

To send a message, we just call other agent’s member Buy involving the
corresponded computation in the simulation with help of the do! construct.
In that member we check whether the innermost active state of that agent is
potentialAdopter. If it is then we draw lots that depend on the adoption
fraction and in case of success move the agent to pass to the adopter state. All
the machinery with activation and deactivation of states is operated by Aivika.

To activate the first agents, we use the once function of the Dynamics mod-
ule. It guarantees that such an activation will occur only once.

let starter =
dynamics {
for i = 1 to n do
let agent = Person ()
do! agent.StartD (starttime)
} |> Dynamics.once

Finally, we return the results of simulation in the CSV format. Here we use
the Var class type to generate data that depend on the agents, i.e. the counters
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of potential adopters and adopters. The agents and variables use the same event
queue that synchronizes all computations that pass through it.

7.3 Using Variables and Integrating Agents

The agents can be integrated into the hybrid model with help of the Var class
type. The agent and any variable that depends on it should use one event queue.
Then the agent can transfer data to other parts of the hybrid model through
such variables. The scheme is the same as it was in case of DES. The previous
section provides the corresponded example.
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